[Codeforces 1011E] Border
[题目链接]
https://codeforces.com/contest/1011/problem/E
[算法]
裴蜀定理 : 设为n个整数,d是它们的最大公约数,那么存在整数 使得
显然 , 我们只需求出a1,a2...an模k意义下的最大公约数G,然后枚举G的倍数即可
时间复杂度 : O(NlogK)
[代码]
#include<bits/stdc++.h>
using namespace std;
#define MAXN 200010 int n , k;
int a[MAXN]; template <typename T> inline void chkmax(T &x,T y) { x = max(x,y); }
template <typename T> inline void chkmin(T &x,T y) { x = min(x,y); }
template <typename T> inline void read(T &x)
{
T f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
}
inline int gcd(int x,int y)
{
if (y == ) return x;
else return gcd(y,x % y);
} int main()
{ read(n); read(k);
for (int i = ; i <= n; i++)
{
read(a[i]);
a[i] %= k;
if (a[i] == ) a[i] = k;
}
int g = a[];
for (int i = ; i <= n; i++) g = gcd(g,a[i]);
set< int > ans;
int now = ;
for (int i = ; i < k; i++)
{
ans.insert(now);
now = (now + g) % k;
}
printf("%d\n",(int)ans.size());
for (set< int > :: iterator it = ans.begin(); it != ans.end(); it++) printf("%d ",*it);
printf("\n"); return ; }
[Codeforces 1011E] Border的更多相关文章
- [codeforces/gym/100431/E]KMP关于border的理解
题目链接:http://codeforces.com/gym/100431/ 考虑到对于一个串β,能cover它的最短的α必然是它的border的某个前缀,或者是这个β本身. 所谓border,就是n ...
- Codeforces | CF1010C 【Border】
这道题大致题意是给定\(n\)个十进制整数和一个进制数\(k\),可以用无数多个给定的十进制整数,问这些十进制整数的和在模k意义下有多少种不同的结果(\(k\)进制下整数的最后一位就是这个数模\(k\ ...
- Codeforces #499 Div2 E (1010C) Border
一直第9个样例WA,发现事情没有这么简单的时候只剩20分钟了...... 看了一些大神提交的代码,发现还能这么玩..... 这个题目可以转化成这个问题:给一堆[0,m)之间的数,可以随意组合成新的数( ...
- AC Codeforces Round #499 (Div. 2) E. Border 扩展欧几里得
没想出来QAQ....QAQ....QAQ.... 对于一般情况,我们知道 ax+by=gcd(a,b)ax+by=gcd(a,b)ax+by=gcd(a,b) 时方程是一定有解的. 如果改成 ax+ ...
- 【Codeforces Round #499 (Div. 2) E】Border
[链接] 我是链接,点我呀:) [题意] 给你n个数字,每个数字可以无限用,每种方案可以组成一个和,问你%k的结果有多少种不同的结果. [题解] 相当于给你一个方程 \(x_1*a_1+x_2*a_2 ...
- Codeforces #499 E Border ( 裴蜀定理 )
题目链接 题意 : 给出 N 种纸币.并且给出面值.每种纸币的数量可以任选.问你得出来的数在 k 进制下.末尾位的数有多少种可能.输出具体方案 分析 : 纸币任意选择组成的和 可以用一个一次多项式来表 ...
- codeforces 1010 C. Border【exgcd】
题目链接:戳这里 学习博客:戳这里 题意:给n种数,n种数取任意个任意组合相加为sum,求sum%k有哪些值. 解题思路: 由exgcd可知(具体用到的是贝祖定理),ax + by = c,满足gcd ...
- Codeforces Round #284 (Div. 2)A B C 模拟 数学
A. Watching a movie time limit per test 1 second memory limit per test 256 megabytes input standard ...
- Codeforces Round #385 (Div. 2) B - Hongcow Solves A Puzzle 暴力
B - Hongcow Solves A Puzzle 题目连接: http://codeforces.com/contest/745/problem/B Description Hongcow li ...
随机推荐
- 【Ts 4】ftp服务器搭建
一.为什么需要ftp? 分布式环境一般都有一个专门的图片服务器存放图片.我们使用虚拟机搭建一个专门的服务器来存放图片.在此服务器上安装一个nginx来提供http服务,安装一个ftp服务器来提供图片上 ...
- Go map基础
package main import "fmt" //Map //创建:make(map[string]int) //获取元素: m[key] //key不存在时,获得value ...
- [NOIP1998] 提高组 洛谷P1013 进制位
题目描述 著名科学家卢斯为了检查学生对进位制的理解,他给出了如下的一张加法表,表中的字母代表数字. 例如: L K V E L L K V E K K V E KL V V E KL KK E E K ...
- 【HDOJ6330】Visual Cube(模拟)
题意: 思路: import java.util.Scanner; public class Main { public static void main(String args[]) { Scann ...
- msp430项目编程01
msp430中项目---点阵LED显示 1.点阵LED介绍 2.代码(直接使用引脚驱动) 3.代码(使用芯片驱动) 4.项目总结 msp430项目编程 msp430入门学习
- oracle 启动监听报错TNS-12547: TNS:lost contact
https://blog.csdn.net/liqfyiyi/article/details/7534018
- Palindrome Partitioning (回文子串题)
Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...
- Linux--进程组、会话、守护进程(转)
http://www.cnblogs.com/forstudy/archive/2012/04/03/2427683.html 进程组 一个或多个进程的集合 进程组ID: 正整数 两个函数 getpg ...
- Java中@SuppressWarnings注解用法(转)
背景: J2SE提供的最后一个注解是@SuppressWarnings.该批注的作用是给编译器一条指令,告诉它对被批注的代码元素内部的某些警告保持静默. @SuppressWarnings注解允许您选 ...
- hdu 1385 Minimum Transport Cost(floyd && 记录路径)
Minimum Transport Cost Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/O ...