题目链接:

C. NP-Hard Problem

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Recently, Pari and Arya did some research about NP-Hard problems and they found the minimum vertex cover problem very interesting.

Suppose the graph G is given. Subset A of its vertices is called a vertex cover of this graph, if for each edge uv there is at least one endpoint of it in this set, i.e.  or  (or both).

Pari and Arya have won a great undirected graph as an award in a team contest. Now they have to split it in two parts, but both of them want their parts of the graph to be a vertex cover.

They have agreed to give you their graph and you need to find two disjoint subsets of its vertices A and B, such that both A and B are vertex cover or claim it's impossible. Each vertex should be given to no more than one of the friends (or you can even keep it for yourself).

Input

The first line of the input contains two integers n and m (2 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — the number of vertices and the number of edges in the prize graph, respectively.

Each of the next m lines contains a pair of integers ui and vi (1  ≤  ui,  vi  ≤  n), denoting an undirected edge between ui and vi. It's guaranteed the graph won't contain any self-loops or multiple edges.

Output

If it's impossible to split the graph between Pari and Arya as they expect, print "-1" (without quotes).

If there are two disjoint sets of vertices, such that both sets are vertex cover, print their descriptions. Each description must contain two lines. The first line contains a single integer k denoting the number of vertices in that vertex cover, and the second line contains kintegers — the indices of vertices. Note that because of m ≥ 1, vertex cover cannot be empty.

Examples
input
4 2
1 2
2 3
output
1
2
2
1 3
input
3 3
1 2
2 3
1 3
output
-1

题意:

给一个森林,问能否找到这样的两个集合,使每条边的至少一个点在这样的集合里;有的话输出这两个集合;

思路:

每一条边的两个点分别是这两个集合里的;如果出现奇数长度的环就怎么也无法满足了;

AC代码:
//#include <bits/stdc++.h>
#include <vector>
#include <iostream>
#include <queue>
#include <cmath>
#include <map>
#include <cstring>
#include <algorithm>
#include <cstdio> using namespace std;
#define Riep(n) for(int i=1;i<=n;i++)
#define Riop(n) for(int i=0;i<n;i++)
#define Rjep(n) for(int j=1;j<=n;j++)
#define Rjop(n) for(int j=0;j<n;j++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<''||CH>'';F= CH=='-',CH=getchar());
for(num=;CH>=''&&CH<='';num=num*+CH-'',CH=getchar());
F && (num=-num);
}
int stk[], tp;
template<class T> inline void print(T p) {
if(!p) { puts(""); return; }
while(p) stk[++ tp] = p%, p/=;
while(tp) putchar(stk[tp--] + '');
putchar('\n');
} const LL mod=1e9+;
const double PI=acos(-1.0);
const LL inf=1e18;
const int N=1e5+;
const int maxn=;
const double eps=1e-; int n,m;
vector<int>ve[N];
int dis[N],vis[N],ansa[N],ansb[N];
queue<int>qu; int bfs(int x)
{
vis[x]=;
while(!qu.empty())qu.pop();
qu.push(x);
while(!qu.empty())
{
int fr=qu.front();
qu.pop();
int len=ve[fr].size();
for(int i=;i<len;i++)
{
int y=ve[fr][i];
if(!vis[y])
{
dis[y]=dis[fr]+;
qu.push(y);
vis[y]=;
}
else
{
if((dis[y]+dis[fr])%==)return ;
}
}
}
return ;
}
int check()
{
for(int i=;i<=n;i++)
{
if(!vis[i])
{
dis[i]=;
if( bfs(i)==)return ;
}
}
return ;
}
int main()
{ read(n);read(m);
int u,v;
for(int i=;i<m;i++)
{
read(u);read(v);
ve[u].push_back(v);
ve[v].push_back(u);
}
if(!check())cout<<"-1"<<"\n";
else
{
int A=,B=;
for(int i=;i<=n;i++)
{
if(dis[i]&)ansa[A++]=i;
else ansb[B++]=i;
}
cout<<A<<"\n";
for(int i=;i<A-;i++)printf("%d ",ansa[i]);
printf("%d\n",ansa[A-]);
cout<<B<<"\n";
for(int i=;i<B-;i++)printf("%d ",ansb[i]);
printf("%d\n",ansb[B-]); } return ;
}

codeforces 688C C. NP-Hard Problem(bfs判断奇数长度环)的更多相关文章

  1. hdu-5652 India and China Origins(二分+bfs判断连通)

    题目链接: India and China Origins Time Limit: 2000/2000 MS (Java/Others)     Memory Limit: 65536/65536 K ...

  2. 实验12:Problem D: 判断两个圆之间的关系

    Home Web Board ProblemSet Standing Status Statistics   Problem D: 判断两个圆之间的关系 Problem D: 判断两个圆之间的关系 T ...

  3. HDU 3342 Legal or Not(判断是否存在环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3342 Legal or Not Time Limit: 2000/1000 MS (Java/Othe ...

  4. POJ-3259 Wormholes---SPFA判断有无负环

    题目链接: https://vjudge.net/problem/POJ-3259 题目大意: 农夫约翰在探索他的许多农场,发现了一些惊人的虫洞.虫洞是很奇特的,因为它是一个单向通道,可让你进入虫洞的 ...

  5. Lightoj 1003 - Drunk(拓扑排序判断是否有环 Map离散化)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1003 题意是有m个关系格式是a b:表示想要和b必须喝a,问一个人是否喝醉就看一个人是 ...

  6. JS判断字符串长度的5个方法

    这篇文章主要介绍了JS判断字符串长度的5个方法,并且区分中文和英文,需要的朋友可以参考下 目的:计算字符串长度(英文占1个字符,中文汉字占2个字符)   方法一:    代码如下: String.pr ...

  7. iOStextFiled判断输入长度

    个人在开发当中发现在用textField的代理方法 -(BOOL)textField:(UITextField *)textField shouldChangeCharactersInRange:(N ...

  8. php--------使用 isset()判断字符串长度速度比strlen()更快

    isset()速度为什么比strlen()更快呢? strlen()函数函数执行起来相当快,因为它不做任何计算,只返回在zval 结构(C的内置数据结构,用于存储PHP变量)中存储的已知字符串长度.但 ...

  9. C 语言实例 - 判断奇数/偶数

    C 语言实例 - 判断奇数/偶数 C 语言实例 C 语言实例 以下实例判断用户输入的整数是奇数还是偶数. 实例 #include <stdio.h> int main() { int nu ...

随机推荐

  1. php-fpm.conf

    [global]pid = /usr/local/php/var/run/php-fpm.piderror_log = /usr/local/php/var/log/php-fpm.loglog_le ...

  2. 洛谷P1504 积木城堡

    题目描述 XC的儿子小XC最喜欢玩的游戏用积木垒漂亮的城堡.城堡是用一些立方体的积木垒成的,城堡的每一层是一块积木.小XC是一个比他爸爸XC还聪明的孩子,他发现垒城堡的时候,如果下面的积木比上面的积木 ...

  3. iOS时钟,秒针扫秒样式

    昨天做一个时钟小demo,发现了一些问题. 描述能力有限,我封装好了一个时钟框架,朋友们可以参考      https://github.com/qianlishun/ClockView 点击这里可以 ...

  4. boost thread 在非正常退出时 内存泄露问题

    在使用boost的thread库的时候,如果主程序退出,thread创建的线程不做任何处理,则会出现内存泄露. 解决方法: 在主线程退出时,对所有thread使用interrupt()命令,然后主程序 ...

  5. cobbler ks文件解释--转载

    cobbler中ks.cfg文件配置详解        许多系统管理员宁愿使用自动化的安装方法来安装红帽企业 Linux.为了满足这种需要,红帽创建了kickstart安装方法.使用kickstart ...

  6. Spring + RMI

    服务端: RmiServer.xml <?xml version="1.0" encoding="UTF-8"?> <beans xmlns= ...

  7. 202. Segment Tree Query

    最后更新 二刷 09-Jan-17 正儿八经线段树的应用了. 查找区间内的值. 对于某一个Node,有这样的可能: 1)需要查找区间和当前NODE没有覆盖部分,那么直接回去就行了. 2)有覆盖的部分, ...

  8. OPENWRT安装Python到U盘

    http://www.zcilxl.com/tech/23.html 研究了一下如何将软件安装在OPENWRT挂载的U盘上,以Python为例,把过程记录一下. 安装的前提是你的USB设备已经成功挂载 ...

  9. 报错** is not accessible due to restriction on required library

    报错: Description Resource Path Location TypeAccess restriction: The type Map<String,Object> is ...

  10. 深入浅出Redis(三)高级特性:管道

    Redis是一个响应式的服务,当client发送一个请求后,就处于堵塞状态等待Redis返回结果. 这样一次命令消耗的时间就包含三个部分:请求从client到server的时间.结果从server到c ...