In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)

Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

Output Specification:

For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either Eulerian, Semi-Eulerian, or Non-Eulerian. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

Sample Input 1:

7 12

5 7

1 2

1 3

2 3

2 4

3 4

5 2

7 6

6 3

4 5

6 4

5 6

Sample Output 1:

2 4 4 4 4 4 2

Eulerian

Sample Input 2:

6 10

1 2

1 3

2 3

2 4

3 4

5 2

6 3

4 5

6 4

5 6

Sample Output 2:

2 4 4 4 3 3

Semi-Eulerian

Sample Input 3:

5 8

1 2

2 5

5 4

4 1

1 3

3 2

3 4

5 3

Sample Output 3:

3 3 4 3 3

Non-Eulerian

#include<iostream> //注意检查连通性
#include<vector>
using namespace std;
int cnt=0;
vector<vector<int>> graph;
vector<int> visited(501, 0);
void dfs(int s){
visited[s]=1;
cnt++;
for(int i=0; i<graph[s].size(); i++)
if(visited[graph[s][i]]==0)
dfs(graph[s][i]);
}
int main(){
int vn, en, even=0;
cin>>vn>>en;
vector<int> degrees(vn+1, 0);
graph.resize(vn+1);
for(int i=0; i<en; i++){
int v1, v2;
cin>>v1>>v2;
graph[v1].push_back(v2);
graph[v2].push_back(v1);
degrees[v1]++;
degrees[v2]++;
}
dfs(1);
for(int i=1; i<=vn; i++){
i==1?cout<<degrees[i]:cout<<" "<<degrees[i];
even=(degrees[i]%2==0?even:even+1);
}
cout<<endl;
if(even==0&&cnt==vn)
cout<<"Eulerian"<<endl;
else if(even==2&&cnt==vn)
cout<<"Semi-Eulerian"<<endl;
else
cout<<"Non-Eulerian"<<endl;
return 0;
}

PAT 1126 Eulerian Path的更多相关文章

  1. PAT 1126 Eulerian Path[欧拉路][比较]

    1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...

  2. PAT甲级 1126. Eulerian Path (25)

    1126. Eulerian Path (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue In grap ...

  3. PAT甲级——1126 Eulerian Path

    我是先在CSDN上发布的这篇文章:https://blog.csdn.net/weixin_44385565/article/details/89155050 1126 Eulerian Path ( ...

  4. 1126 Eulerian Path (25 分)

    1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...

  5. PAT 甲级 1126 Eulerian Path

    https://pintia.cn/problem-sets/994805342720868352/problems/994805349851185152 In graph theory, an Eu ...

  6. PAT A1126 Eulerian Path (25 分)——连通图,入度

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  7. 1126. Eulerian Path (25)

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  8. PAT甲题题解-1126. Eulerian Path (25)-欧拉回路+并查集判断图的连通性

    题目已经告诉如何判断欧拉回路了,剩下的有一点要注意,可能图本身并不连通. 所以这里用并查集来判断图的联通性. #include <iostream> #include <cstdio ...

  9. 1126 Eulerian Path

    题意:若图是连通图,且所有结点的度均为偶数,则称为Eulerian:若有且仅有两个结点的度为奇数,则称为semi-Eulerian.现给出一个图,要我们判断其是否为Eulerian,semi-Eule ...

随机推荐

  1. 5. extjs 中buttonAlign什么意思

    转自:https://zhidao.baidu.com/question/1174901985976576339.html指定Panel中按钮的位置.可配置的值有'right', 'left' 和 ' ...

  2. bzoj 1671: [Usaco2005 Dec]Knights of Ni 骑士【bfs】

    bfs预处理出每个点s和t的距离d1和d2(无法到达标为inf),然后在若干灌木丛格子(x,y)里取min(d1[x][y]+d2[x][y]) /* 0:贝茜可以通过的空地 1:由于各种原因而不可通 ...

  3. 自己编写的str操作函数

    1.strcat() 此函数原型为 char *strcat(char *dest, const char *src). 功能为连接两个字符串,把src连接到dest后面:返回dest地址 实现如下 ...

  4. [译]libcurl错误码

    CURLcode Almost all "easy" interface functions return a CURLcode error code. No matter wha ...

  5. 6.12---前提两个对象的成员必须一致,才能将有数据的对象将数据传给反射获取的对象conver(有数据对象,目标对象)

    //// Source code recreated from a .class file by IntelliJ IDEA// (powered by Fernflower decompiler)/ ...

  6. 安卓TV盒子常见问题以及解决方法

    1.为什么requestfocus无效 原因:requestfocus不支持在Touch模式下的Focus; 解法方案:再加一个requestFocusFromTouch函数. 2.摄像头打开问题,调 ...

  7. 【转】jvm类加载

    类加载机制 JVM把class文件加载的内存,并对数据进行校验.转换解析和初始化,最终形成JVM可以直接使用的Java类型的过程就是加载机制. 类从被加载到虚拟机内存中开始,到卸载出内存为止,它的生命 ...

  8. oracle dos命令

    1.无账户密码登录数据库:sqlplus/nolog 后面不能加分号,否则不能识别 2.登录数据库:sqlplus 3.在sql下测试连接性:conn oracle_name/oracle_passw ...

  9. java树型结构的数据展现设计

    在做一个需求管理的页面时,需求的展现是不限层级树型结构,需求下还可以分拆任务,页面要展现的字段有20多个,而且需求采用通用表单设计,db采用大宽表存储,有一百多个字段.目前数据量不大,第一版采用普通的 ...

  10. 梦想CAD控件安卓参数绘图

    在CAD绘图中,参数化绘图可以帮助我们极大缩短设计时间,用户可以按照设计意图控制绘图对象,这样即使对象发生了变化,具体的关系和测量数据仍将保持不变,能够对几何图形和标注进行控制,可以帮助用户应对耗时的 ...