In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)

Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

Output Specification:

For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either Eulerian, Semi-Eulerian, or Non-Eulerian. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

Sample Input 1:

7 12

5 7

1 2

1 3

2 3

2 4

3 4

5 2

7 6

6 3

4 5

6 4

5 6

Sample Output 1:

2 4 4 4 4 4 2

Eulerian

Sample Input 2:

6 10

1 2

1 3

2 3

2 4

3 4

5 2

6 3

4 5

6 4

5 6

Sample Output 2:

2 4 4 4 3 3

Semi-Eulerian

Sample Input 3:

5 8

1 2

2 5

5 4

4 1

1 3

3 2

3 4

5 3

Sample Output 3:

3 3 4 3 3

Non-Eulerian

#include<iostream> //注意检查连通性
#include<vector>
using namespace std;
int cnt=0;
vector<vector<int>> graph;
vector<int> visited(501, 0);
void dfs(int s){
visited[s]=1;
cnt++;
for(int i=0; i<graph[s].size(); i++)
if(visited[graph[s][i]]==0)
dfs(graph[s][i]);
}
int main(){
int vn, en, even=0;
cin>>vn>>en;
vector<int> degrees(vn+1, 0);
graph.resize(vn+1);
for(int i=0; i<en; i++){
int v1, v2;
cin>>v1>>v2;
graph[v1].push_back(v2);
graph[v2].push_back(v1);
degrees[v1]++;
degrees[v2]++;
}
dfs(1);
for(int i=1; i<=vn; i++){
i==1?cout<<degrees[i]:cout<<" "<<degrees[i];
even=(degrees[i]%2==0?even:even+1);
}
cout<<endl;
if(even==0&&cnt==vn)
cout<<"Eulerian"<<endl;
else if(even==2&&cnt==vn)
cout<<"Semi-Eulerian"<<endl;
else
cout<<"Non-Eulerian"<<endl;
return 0;
}

PAT 1126 Eulerian Path的更多相关文章

  1. PAT 1126 Eulerian Path[欧拉路][比较]

    1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...

  2. PAT甲级 1126. Eulerian Path (25)

    1126. Eulerian Path (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue In grap ...

  3. PAT甲级——1126 Eulerian Path

    我是先在CSDN上发布的这篇文章:https://blog.csdn.net/weixin_44385565/article/details/89155050 1126 Eulerian Path ( ...

  4. 1126 Eulerian Path (25 分)

    1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...

  5. PAT 甲级 1126 Eulerian Path

    https://pintia.cn/problem-sets/994805342720868352/problems/994805349851185152 In graph theory, an Eu ...

  6. PAT A1126 Eulerian Path (25 分)——连通图,入度

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  7. 1126. Eulerian Path (25)

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  8. PAT甲题题解-1126. Eulerian Path (25)-欧拉回路+并查集判断图的连通性

    题目已经告诉如何判断欧拉回路了,剩下的有一点要注意,可能图本身并不连通. 所以这里用并查集来判断图的联通性. #include <iostream> #include <cstdio ...

  9. 1126 Eulerian Path

    题意:若图是连通图,且所有结点的度均为偶数,则称为Eulerian:若有且仅有两个结点的度为奇数,则称为semi-Eulerian.现给出一个图,要我们判断其是否为Eulerian,semi-Eule ...

随机推荐

  1. SVN 打补丁 Apply Patch ***

    SVN补丁的方式,在不能连接服务器或者没有修改的权限,但是迫于形势,你又必须对这个文件进行修改,这时你就可以用Create patch创建补丁,然后把你创建的补丁发给项目人,或对此目录有写权限的工作人 ...

  2. 转贴:CSS伪类与CSS伪元素的区别及由来具体说明

    关于两者的区别,其实是很古老的问题.但是时至今日,由于各种网络误传以及一些不负责任的书籍误笔,仍然有相当多的人将伪类与伪元素混为一谈,甚至不乏很多CSS老手.早些年刚入行的时候,我自己也被深深误导,因 ...

  3. jQuery——表单应用(4)

    HTML: <!--复选框应用--> <!DOCTYPE html> <html> <head> <meta charset="UTF- ...

  4. 二分图最大匹配(匈牙利算法) POJ 3041 Asteroids

    题目传送门 /* 题意:每次能消灭一行或一列的障碍物,要求最少的次数. 匈牙利算法:把行和列看做两个集合,当有障碍物连接时连一条边,问题转换为最小点覆盖数==二分图最大匹配数 趣味入门:http:// ...

  5. 2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛-B-Perfect Numbers(完数)

    题目描述 We consider a positive integer perfect, if and only if it is equal to the sum of its positive d ...

  6. MVC学习-用EF做增删改查

    在做增删改查先,先介绍几个知识点: 1.代理类 在将对象方法EF数据上下文时,EF会为该对象封装 一个代理类对象, 同时为该对象的每一个属性添加一个标志:unchanged, 当对该对象某个属性进行操 ...

  7. 【工具】前端Photoshop

    前端photoshop最常见问题: 字体单位换成像素:按下ctrl+k调出首选项,选择单位与标尺,在里面把文字单位由点改为像素就行了.不过要注意的是,点是很多软件里面文字的默认单位.像素是虚拟单位,如 ...

  8. Android 解决RecyclerView瀑布流效果结合Glide使用时图片变形的问题

    问题描述:使用Glide加载RecyclerView的Item中的图片,RecyclerView使用了瀑布流展示图片,但是滚动时图片会不断的加载,并且大小位置都会改变,造成显示错乱. 解决方法:使用瀑 ...

  9. IT项目为什么失败 --美国IT项目管理硕士笔记(一)

    IT项目为什么失败 什么是项目   项目可以被看作任何一系列的活动和任务.这些活动和任务有一个特定目标需要在特定要求下完成,并有一个明确的开始结束日期和资金限制(如果有).项目需要消耗人力或非人力资源 ...

  10. win7 中使用NFS共享

    转自和修改自:http://blog.sina.com.cn/s/blog_553761ef0100oevm.html 一 安装 在卸载或更改程序->打开或关闭windows的功能-> 安 ...