题目大意

给定长度为l的只有f,m两种字母 的序列,问不出现fff,fmf的序列个数有多少个

每次的下一个状态都与前一次状态的后两个字母有关

比如我令mm : 0 , mf : 1 , fm : 2 , ff : 3;

那么dp[i][j] 表示长度为i的序列最后由j状态结尾的总个数,当然 j 要大于2

dp[i][0] = dp[i-1][0] + dp[i-1][2]

dp[i][1] = dp[i-1][0]

dp[i][2] = dp[i-1][1] + dp[i-1][3]

dp[i][3] = dp[i-1][1]

根据这个递推关系,我们就能很容易地用动态规划解这道题目,然后就发现超时了 。。。

换个角度把dp值当作矩阵看 (dp[i][0] ,  dp[i][1] , dp[i][2] , dp[i][3]) = {{1 , 1 , 0 , 0} , {0 , 0 , 1, 1} , {1 , 0 , 0 ,0} , {0 , 0 ,1 , 0}} *(dp[i-1][0] ,  dp[i-1][1] , dp[i-1][2] , dp[i-1][3])

然后连续乘法上进行优化

while(n){

  if(n & 1) ~

  ~

  n>>=1

}

 #include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int l , M; struct Matrix{
int m[][];
Matrix operator*(const Matrix &p)const {
Matrix tmp;
for(int i = ; i < ; i++)
for(int j = ; j< ; j++){
tmp.m[i][j] = ;
for(int k = ; k< ; k++){
tmp.m[i][j] += m[i][k] * p.m[k][j];
tmp.m[i][j] %= M;
}
}
return tmp;
}
void show(){
for(int i = ; i< ; i++){
for(int j = ; j< ; j++){
printf("%d " , m[i][j]);
}
puts("");
}
}
}; Matrix pow(Matrix a , int n)
{
Matrix tmp;
memset(tmp.m , , sizeof(tmp.m));
//建立一个单位矩阵
for(int i = ; i< ; i++)
tmp.m[i][i] = ; while(n){
if(n & ) tmp = tmp*a;
a = a * a;
n >>= ;
}
return tmp;
} int main()
{
while(~scanf("%d%d" , &l , &M)){
if(l == ) puts("");
else if(l == ) printf("%d\n" , %M);
else{
Matrix a;
a.m[][] = , a.m[][] = , a.m[][] = , a.m[][] = ;
a.m[][] = , a.m[][] = , a.m[][] = , a.m[][] = ;
a.m[][] = , a.m[][] = , a.m[][] = , a.m[][] = ;
a.m[][] = , a.m[][] = , a.m[][] = , a.m[][] = ; Matrix t = pow(a , l-); int ans = ;
int b[] = { , , , };
for(int i = ; i< ; i++)
for(int j = ; j< ; j++){
ans += b[j] * t.m[j][i];
}
printf("%d\n" , ans % M);
}
}
return ;
}

HDU 2604 矩阵快速幂的更多相关文章

  1. hdu 2604 矩阵快速幂模板题

    /* 矩阵快速幂: 第n个人如果是m,有f(n-1)种合法结果 第n个人如果是f,对于第n-1和n-2个人有四种ff,fm,mf,mm其中合法的只有fm和mm 对于ffm第n-3个人只能是m那么有f( ...

  2. HDU - 2604 矩阵快速幂 字符串递推 两种解法

    记dp[i]为长度i且符合题意的方案数,dp[n]就是解 符合方案的是不含fmf和fff子串的字符串 考虑如何从前面几项递推出后面第i项 (★表示存在生成的非法方案)←其实没啥用处 i=1时 m③ f ...

  3. HDU 2855 (矩阵快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855 题目大意:求$S(n)=\sum_{k=0}^{n}C_{n}^{k}Fibonacci(k)$ ...

  4. HDU 4471 矩阵快速幂 Homework

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4471 解题思路,矩阵快速幂····特殊点特殊处理····· 令h为计算某个数最多须知前h个数,于是写 ...

  5. HDU - 1575——矩阵快速幂问题

    HDU - 1575 题目: A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973.  Input数据的第一行是一个T,表示有T组数据. 每组数据的第一行有n( ...

  6. hdu 1757 (矩阵快速幂) 一个简单的问题 一个简单的开始

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 题意不难理解,当x小于10的时候,数列f(x)=x,当x大于等于10的时候f(x) = a0 * ...

  7. 随手练——HDU 5015 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5015 看到这个限时,我就知道这题不简单~~矩阵快速幂,找递推关系 我们假设第一列为: 23 a1 a2 ...

  8. HDU 3802 矩阵快速幂 化简递推式子 加一点点二次剩余知识

    求$G(a,b,n,p) = (a^{\frac {p-1}{2}}+1)(b^{\frac{p-1}{2}}+1)[(\sqrt{a} + \sqrt{b})^{2F_n} + (\sqrt{a} ...

  9. How many ways?? HDU - 2157 矩阵快速幂

    题目描述 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的 ...

随机推荐

  1. 例题 5-1 STL

    Raju and Meena love to play with Marbles. They have got a lot of marbles with numbers written on the ...

  2. laravel 模型 $table $guarded $hidden

     首先以App\User模型为例 1.$table属性 表名,对应数据库中的表名 2.guarded)属性 guarded表示在create()方法中不能被赋值的字段 3.$hidden属性 $hid ...

  3. C#基础 特殊集合

    //stack 干草堆 //先进后出 进 push 出 pop //初始化 //Stack ss = new Stack(); //ss.Push(1); //ss.Push(2); //ss.Pus ...

  4. Scala-基础-函数(2)

    import junit.framework.TestCase //函数(2) //知识点-默认参数,带名参数,变长参数,过程 class Demo1 extends TestCase { //测试方 ...

  5. CF848A From Y to Y

    思路1: 每次贪心地选择满足i * (i - 1) / 2 <= k最大的i并从k中减去i * (i - 1) / 2,直至k为0.由于函数x * (x - 1) / 2的增长速度比2x要慢,所 ...

  6. CF814C An impassioned circulation of affection

    思路: 对于题目中的一个查询(m, c),枚举子区间[l, r](0 <= l <= r < n),若该区间满足其中的非c字符个数x不超过m,则可以将其合法转换为一个长度为r-l+1 ...

  7. C#随机取部分数据

    1.使用Random伪随机生成器 但是这样会由于转换为数组类型导致性能下降,千万要避免这种用法. 2.使用Take返回重头开始指定数量的连续元素 每次进来这个方法的时候,都使用Guid进行一次排序,然 ...

  8. arduino 字符解析

    Arduino String.h库函数详解   此库中包含1 charAT()2 compareTo()3 concat()4 endsWith()5 equals()6 equalslgnoreCa ...

  9. 【转】jvm类加载

    类加载机制 JVM把class文件加载的内存,并对数据进行校验.转换解析和初始化,最终形成JVM可以直接使用的Java类型的过程就是加载机制. 类从被加载到虚拟机内存中开始,到卸载出内存为止,它的生命 ...

  10. BackboneJS and UnderscoreJS

     介绍 来自API(backbone能做什么?) 当我们开发含有大量Javascript的web应用程序时,首先你需要做的事情之一便是停止向DOM对象附加数据. 通过复杂多变的jQuery选择符和回调 ...