The Romantic Her

Problem Description
There is an old country and the king fell in love with a devil. The devil always asks the king to do some crazy things. Although the king used to be wise and beloved by his people. Now he is just like a boy in love and can’t refuse any request from the devil. Also, this devil is looking like a very cute Loli.

You may wonder why this country has such an interesting tradition? It has a very long story, but I won't tell you :).

Let us continue, the party princess's knight win the algorithm contest. When the devil hears about that, she decided to take some action.

But before that, there is another party arose recently, the 'MengMengDa' party, everyone in this party feel everything is 'MengMengDa' and acts like a 'MengMengDa' guy.

While they are very pleased about that, it brings many people in this kingdom troubles. So they decided to stop them.

Our hero z*p come again, actually he is very good at Algorithm contest, so he invites the leader of the 'MengMengda' party xiaod*o to compete in an algorithm contest.

As z*p is both handsome and talkative, he has many girl friends to deal with, on the contest day, he find he has 3 dating to complete and have no time to compete, so he let you to solve the problems for him.

And the easiest problem in this contest is like that:

There is n number a_1,a_2,...,a_n on the line. You can choose two set S(a_s1,a_s2,..,a_sk) and T(a_t1,a_t2,...,a_tm). Each element in S should be at the left of every element in T.(si < tj for all i,j). S and T shouldn't be empty.

And what we want is the bitwise XOR of each element in S is equal to the bitwise AND of each element in T.

How many ways are there to choose such two sets? You should output the result modulo 10^9+7.

 

Input
The first line contains an integer T, denoting the number of the test cases.
For each test case, the first line contains a integers n.
The next line contains n integers a_1,a_2,...,a_n which are separated by a single space.

n<=10^3, 0 <= a_i <1024, T<=20.

 

Output
For each test case, output the result in one line.
 

Sample Input
2 3 1 2 3 4 1 2 3 3
 

Sample Output
1 4

题意:给出一组数将其分成前后两组,问一共有多少组使得前一部分的异或值等于后一部分的与值。

开始想的差不多了前后各来一次dp,还有20分钟没细想,少了一个状态,就是当前的状态可以不变的。

然后需要注意的是可能集合为空,这是不允许的。

 1 // by caonima
 2 // hehe
 3 #include <cstdio>
 4 #include <cstring>
 5 #include <algorithm>
 6 using namespace std;
 7 typedef long long LL;
 8 const int MAX = 1e3+;
 9 const int MOD = 1e9+;
 LL dp1[MAX][MAX],dp2[MAX][MAX];
 LL dp3[MAX][MAX],n;
 LL a[MAX];
 
 void gao() {
     dp1[][a[]]=;
     for(int i=;i<=n;i++) {
         dp1[i][a[i]]++;
         for(int j=;j<=;j++) {
             dp1[i][j^a[i]]=(dp1[i][j^a[i]]+dp1[i-][j])%MOD;
             dp1[i][j]=(dp1[i][j]+dp1[i-][j])%MOD;
         }
     }
     dp2[n][a[n]]=dp3[n][a[n]]=;
     for(int i=n-;i>=;i--) {
         dp2[i][a[i]]++; dp3[i][a[i]]++;
         for(int j=;j<=;j++) {
             dp2[i][a[i]&j]=(dp2[i][a[i]&j]+dp3[i+][j])%MOD;
             dp3[i][a[i]&j]=(dp3[i][a[i]&j]+dp3[i+][j])%MOD;
             dp3[i][j]=(dp3[i][j]+dp3[i+][j])%MOD;
         }
     }
     return ;
 }
 
 int main() {
     int cas;
     scanf("%d",&cas);
     while(cas--) {
         scanf("%I64d",&n);
         for(int i=;i<=n;i++) {
             scanf("%I64d",&a[i]);
         }
         memset(dp1,,sizeof(dp1));
         memset(dp2,,sizeof(dp2));
         memset(dp3,,sizeof(dp3));
         gao();
         LL res=;
         for(int i=;i<n;i++) {
             for(int j=;j<;j++) {
                 res=(res+dp1[i][j]*dp2[i+][j])%MOD;
             }
         }
         printf("%I64d\n",res);
     }

55 }

HDU 4906 (dp胡乱搞)的更多相关文章

  1. HDU 4906 Our happy ending (状压DP)

    HDU 4906 Our happy ending pid=4906" style="">题目链接 题意:给定n个数字,每一个数字能够是0-l,要选当中一些数字.然 ...

  2. HDU 5928 DP 凸包graham

    给出点集,和不大于L长的绳子,问能包裹住的最多点数. 考虑每个点都作为左下角的起点跑一遍极角序求凸包,求的过程中用DP记录当前以j为当前末端为结束的的最小长度,其中一维作为背包的是凸包内侧点的数量.也 ...

  3. hdu 3016 dp+线段树

    Man Down Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  4. HDU 4906 状态压缩dp

    Our happy ending Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Other ...

  5. HDU 1069 dp最长递增子序列

    B - Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I6 ...

  6. HDU 1160 DP最长子序列

    G - FatMouse's Speed Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64 ...

  7. hdu 4826(dp + 记忆化搜索)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4826 思路:dp[x][y][d]表示从方向到达点(x,y)所能得到的最大值,然后就是记忆化了. #i ...

  8. HDU 2861 (DP+打表)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2861 题目大意:n个位置,m个人,分成k段,统计分法.S(n)=∑nk=0CknFibonacci(k ...

  9. HDU 2838 (DP+树状数组维护带权排序)

    Reference: http://blog.csdn.net/me4546/article/details/6333225 题目链接: http://acm.hdu.edu.cn/showprobl ...

随机推荐

  1. poj 2409 Let it Bead【polya定理+burnside引理】

    两种置换 旋转:有n种,分别是旋转1个2个--n个,旋转i的循环节数位gcd(i,n) 翻转:分奇偶,对于奇数个,只有一个珠子对一条边的中点,循环节数为n/2+1:对于偶数个,有珠子对珠子和边对边,循 ...

  2. 第四代增强 源代码增强(ABAP Source Code Enhancements)

    显式代码增强的创建 se38打开你要增强的程序 进入编辑状态 在菜单栏选择: Edit->Enhancement Opreations->Create option. 此时弹出Create ...

  3. vs2017 + miniUI 后端框架使用

    vs2017 +  miniUI  后端框架使用 上miniUI官网直接下载框架.http://www.miniui.com/ 此框架使用说明很清楚. 2.1.vs2017创建安装miniUI后端框架 ...

  4. RT-Thread 设备驱动-硬件定时器浅析与使用

    RT-Thread 4.0.0 访问硬件定时器设备 应用程序通过 RT-Thread 提供的 I/O 设备管理接口来访问硬件定时器设备,相关接口如下所示: 函数 描述 rt_device_find() ...

  5. Linux之线程相关命令及常用命令

    查进程 top命令:查看系统的资源状况.#top top -d 10     //指定系统更新进程的时间为10秒 ps:查看当前用户的活动进程.#ps -A ps命令查找与进程相关的PID号: ps ...

  6. Asp.Net 开发实战技术

    1.什么是WMI技术 WMI是一项核心的Windows管理技术,WMI作为一种规范和基础结构,通过它可以访问.配置.管理和监视几乎所有的Windows资源,比如用户可以在远程计算机器上启动一个进程:设 ...

  7. HiveServer2后台运行

    nohup hive --service hiveserver2 & 或者直接: nohup hiveserver2 &

  8. HDU_1874_畅通工程续_最短路问题

    畅通工程续 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  9. How a stack frame works 栈帧的要素与构建步骤

    http://en.citizendium.org/wiki/Stack_frame To use a stack frame, a thread keeps two pointers, often ...

  10. radiobutton group

    1. 环境:VS2010 2. 分组 将radio1.radio2.radio3分为1组,radio4.radio5分为另一组: 方法:设置  radio1  的 属性:  group.tabstop ...