题目描述

给定一个由N个元素组成的整数序列,现在有两种操作:

1 add a

在该序列的最后添加一个整数a,组成长度为N + 1的整数序列

2 mid 输出当前序列的中位数

中位数是指将一个序列按照从小到大排序后处在中间位置的数。(若序列长度为偶数,则指处在中间位置的两个数中较小的那个)

例1:1 2 13 14 15 16 中位数为13

例2:1 3 5 7 10 11 17 中位数为7

例3:1 1 1 2 3 中位数为1

输入输出格式

输入格式:

第一行为初始序列长度N。第二行为N个整数,表示整数序列,数字之间用空格分隔。第三行为操作数M,即要进行M次操作。下面为M行,每行输入格式如题意所述。

输出格式:

对于每个mid操作输出中位数的值

输入输出样例

输入样例#1:

6
1 2 13 14 15 16
5
add 5
add 3
mid
add 20
mid
输出样例#1:

5
13

说明

对于30%的数据,1 ≤ N ≤ 10,000,0 ≤ M ≤ 1,000

对于100%的数据,1 ≤ N ≤ 100,000,0 ≤ M ≤ 10,000

序列中整数的绝对值不超过1,000,000,000,序列中的数可能有重复

每个测试点时限1秒

思路

双堆可过;

感谢xxy大佬!

代码实现

 #include<queue>
#include<cstdio>
using namespace std;
priority_queue<int>q1;
priority_queue<int,vector<int>,greater<int> >q2;
int n,m,now;
int main(){
scanf("%d",&n);
int a;
for(int i=;i<=n;i++){
scanf("%d",&a);
q2.push(a);
}
n++;
for(now=;now<n>>;now++){
q1.push(q2.top());
q2.pop();
}
scanf("%d",&m);
char ch[];
for(int i=;i<=m;i++){
scanf("%s",ch);
if(ch[]=='a'){
scanf("%d",&a);
q1.push(a);
q2.push(q1.top());
q1.pop();
n++;
}
else printf("%d\n",q1.top());
while(now<n>>){
q1.push(q2.top());
q2.pop();
now++;
}
}
return ;
}

[TJOI2010]中位数的更多相关文章

  1. 洛谷 P3871 [TJOI2010]中位数 解题报告

    P3871 [TJOI2010]中位数 题目描述 给定一个由N个元素组成的整数序列,现在有两种操作: 1 add a 在该序列的最后添加一个整数a,组成长度为N + 1的整数序列 2 mid 输出当前 ...

  2. luoguP3871 [TJOI2010]中位数

    题目链接 luoguP3871 [TJOI2010]中位数 题解 平衡树 代码 #include<vector> #include<cstdio> #include<cs ...

  3. 洛谷——P3871 [TJOI2010]中位数

    P3871 [TJOI2010]中位数 一眼秒掉,这不是splay水题吗,套模板 #include<bits/stdc++.h> #define IL inline #define N 1 ...

  4. 题解 P3871 【[TJOI2010]中位数】

    orz各位大佬,题解太强了,主席树,堆,线段树,splay,还有暴力,太巨了.所以我用的是fhq treap(好像更高级).算了. 反正都是平衡树,这道题就是动态求中位数,不会做的同学可以先做弱化版P ...

  5. TJOI2010中位数

    中位数 上面是题目链接. 这一题比较水. 思路非常显然. 用mid查询时,只要返回中间值就行了. 主要就是add操作. 我们肯定不能插在末尾,然后用系统快排,这样只有30分. 那么正确的操作应该是二分 ...

  6. 洛谷P3871 [TJOI2010]中位数(splay)

    题目描述 给定一个由N个元素组成的整数序列,现在有两种操作: 1 add a 在该序列的最后添加一个整数a,组成长度为N + 1的整数序列 2 mid 输出当前序列的中位数 中位数是指将一个序列按照从 ...

  7. [LUOGU] P3871 [TJOI2010]中位数

    题目描述 给定一个由N个元素组成的整数序列,现在有两种操作: 1 add a 在该序列的最后添加一个整数a,组成长度为N + 1的整数序列 2 mid 输出当前序列的中位数 中位数是指将一个序列按照从 ...

  8. 洛谷 3871 [TJOI2010]中位数

    [题解] 平衡树模板题,不过因为可以离线,所以有别的做法.把询问倒着做,变成删掉数字.求中位数,于是可以二分+树状数组. #include<cstdio> #include<cstr ...

  9. 洛谷3871 [TJOI2010]中位数 维护队列的中位数

    题目描述 给定一个由N个元素组成的整数序列,现在有两种操作: 1 add a 在该序列的最后添加一个整数a,组成长度为N + 1的整数序列 2 mid 输出当前序列的中位数 中位数是指将一个序列按照从 ...

随机推荐

  1. WPF学习07:MVVM 预备知识之数据绑定

    MVVM是一种模式,而WPF的数据绑定机制是一种WPF内建的功能集,两者是不相关的. 但是,借助WPF各种内建功能集,如数据绑定.命令.数据模板,我们可以高效的在WPF上实现MVVM.因此,我们需要对 ...

  2. 关于java的arrays数组排序示例AJPFX的分享

    Java API对Arrays类的说明是:此类包含用来操作数组(比如排序和搜索)的各种方法. 1.对基本数据类型的数组的排序 说明: (1)Arrays类中的sort()使用的是“经过调优的快速排序法 ...

  3. 2556. [NOIP2016]玩具谜题

    [题目描述] 小南有一套可爱的玩具小人,它们各有不同的职业.有一天,这些玩具小人把小南的眼镜藏了起来.小南发现玩具小人们围成了一个圈,它们有的面朝国内,有的面朝圈外.如下图: 这时singer告诉小南 ...

  4. 快速排序算法原理及其js实现

    要说快排的原理,通俗点说就是把一个事情,分成很多小事情来处理,分治的思想. 假设我们现在对“6  1  2 7  9  3  4  5 10  8”这10个数进行排序.首先在这个序列中随便找一个数作为 ...

  5. html中 accept 属性

    1.HTML <input> 标签的 accept 属性 在文件上传中使用 accept 属性,本例中的输入字段可以接受 GIF 和 JPEG 两种图像: <form> < ...

  6. Elasticsearch の 查询类型

    查询类型SearchType Es中一共有四种查询类型:QUERY_AND_FETCH.QUERY_THEN_FETCH.DFS_QUERY_AND_FETCH.DFS_QUERY_THEN_FETC ...

  7. codeforces_C. Maximum Subrectangle

    http://codeforces.com/contest/1060/problem/C 题意: a.b数组长度分别为n.m.矩阵C,Cij=ai*bj.在C中找到一个子矩阵,该子矩阵所有元素和不大于 ...

  8. 引用类型 (Reference Type Matters)、扩展与派发方式

    引用类型 (Reference Type Matters) 引用的类型决定了派发的方式. 这很显而易见, 但也是决定性的差异. 一个比较常见的疑惑, 发生在一个协议拓展和类型拓展同时实现了同一个函数的 ...

  9. oauth 理解

    单点登录 对授权码模式的解读. 1. 用户访问客户端,客户端将请求认证服务器. 2. 用户选择是否给予客户端授权 3.用户授权后,认证服务器将用户导向客户端事先定义好的重定向的地址,同时会附上一个授权 ...

  10. eigenface资料整合

    把图片映射到能最好区分的空间(pca),在这个空间同类是聚集的,而不同类之间间隔大.这相当于一个模型,把验证集也映射到此空间,然后利用knn对验证集分类. pca:https://wenku.baid ...