题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对

1<=N<=10^7

思路:莫比乌斯反演,同BZOJ2820……

 const max=;
var sum:array[..max]of int64;
prime,flag,f,mu:array[..max]of longint;
n,m,i,j,t,v,cas:longint; function clac(n:longint):int64;
var x,i,pos:longint;
begin
clac:=; i:=;
while i<=n do
begin
x:=n div i;
pos:=n div x;
clac:=clac+(sum[pos]-sum[i-])*x*x;
i:=pos+;
end;
end; begin mu[]:=;
for i:= to max do
begin
if flag[i]= then
begin
inc(m); prime[m]:=i;
mu[i]:=-;
end;
j:=;
while (j<=m)and(prime[j]*i<=max) do
begin
t:=prime[j]*i; flag[t]:=;
if i mod prime[j]= then
begin
mu[t]:=; break;
end;
mu[t]:=-mu[i];
inc(j);
end;
end;
for i:= to m do
for j:= to max div prime[i] do
begin
t:=prime[i]*j;
f[t]:=f[t]+mu[j];
end;
for i:= to max do sum[i]:=sum[i-]+f[i];
read(n);
writeln(clac(n)); end.

惊奇地发现,自己两年前用欧拉函数的方法过掉了此题……

From hzwer

枚举每个素数,然后每个素数p对于答案的贡献就是(1 ~ n / p) 中有序互质对的个数
而求1~m中有序互质对x,y的个数,可以令y >= x, 当y = x时,有且只有y = x = 1互质,当y > x时,确定y以后符合条件的个数x就是phiy
所以有序互质对的个数为(1 ~ n/p)的欧拉函数之和乘2减1(要求的是有序互质对,乘2以后减去(1, 1)多算的一次)
那么就只需要先筛出欧拉函数再求个前缀和就可以了

 var b,prime,phi:array[..]of longint;
s:array[..]of int64;
ans:int64;
i,j,m,n:longint; begin readln(n);
b[]:=; phi[]:=;
for i:= to n do
begin
if b[i]= then
begin
inc(m); prime[m]:=i; phi[i]:=i-;
end;
for j:= to m do
begin
if i*prime[j]>n then break;
b[i*prime[j]]:=;
if i mod prime[j]= then
begin
phi[i*prime[j]]:=phi[i]*prime[j];
break;
end
else phi[i*prime[j]]:=phi[i]*(prime[j]-); end;
end; for i:= to n do s[i]:=s[i-]+phi[i];
for i:= to m do ans:=ans+s[n div prime[i]]*-;
writeln(ans); end.

【BZOJ2818】Gcd(莫比乌斯反演,欧拉函数)的更多相关文章

  1. $BZOJ$2818 $gcd$ 莫比乌斯反演/欧拉函数

    正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd ...

  2. luogu2658 GCD(莫比乌斯反演/欧拉函数)

    link 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 (1)莫比乌斯反演法 发现就是YY的GCD,左转YY的GCD ...

  3. [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)

    题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...

  4. Bzoj 2818: Gcd 莫比乌斯,分块,欧拉函数,线性筛

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss ...

  5. 洛谷 - P1390 - 公约数的和 - 莫比乌斯反演 - 欧拉函数

    https://www.luogu.org/problemnew/show/P1390 求 $\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m} gcd(i,j) $ ...

  6. BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)

    Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...

  7. HDU 6390 GuGuFishtion(莫比乌斯反演 + 欧拉函数性质 + 积性函数)题解

    题意: 给定\(n,m,p\),求 \[\sum_{a=1}^n\sum_{b=1}^m\frac{\varphi(ab)}{\varphi(a)\varphi(b)}\mod p \] 思路: 由欧 ...

  8. BZOJ4804 欧拉心算(莫比乌斯反演+欧拉函数+线性筛)

    一通套路后得Σφ(d)μ(D/d)⌊n/D⌋2.显然整除分块,问题在于怎么快速计算φ和μ的狄利克雷卷积.积性函数的卷积还是积性函数,那么线性筛即可.因为μ(pc)=0 (c>=2),所以f(pc ...

  9. BZOJ.2705.[SDOI2012]Longge的问题(莫比乌斯反演 欧拉函数)

    题目链接 \(Description\) 求\[\sum_{i=1}^n\gcd(i,n)\] \(Solution\) \[ \begin{aligned} \sum_{i=1}^n\gcd(i,n ...

  10. GCD nyoj 1007 (欧拉函数+欧几里得)

    GCD  nyoj 1007 (欧拉函数+欧几里得) GCD 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 The greatest common divisor ...

随机推荐

  1. python_one-day

    python入门_(1) 作者:_晓冬 归档:学习笔记 2017/9/9 目  录 第1章 练习... 1 1.1 格式化输出... 1 1.2 流程控制if..else. 1 1.3 流程控制whi ...

  2. Netflix正式开源其API网关Zuul 2--转

    微信公众号:聊聊架构 5 月 21 日,Netflix 在其官方博客上宣布正式开源微服务网关组件 Zuul 2.Netflix 公司是微服务界的楷模,他们有大规模生产级微服务的成功应用案例,也开源了相 ...

  3. gulp构建工具学习汇总

    前端脚手架____gulp配置文件------- https://pan.baidu.com/s/1eSs7COy 1:有了package.json 直接 npm install自动下载相应的npm包 ...

  4. hihocoder编程练习赛52-1 字符串排序

    思路: 将字符串按照新的顺序映射之后再排序. 实现: #include <bits/stdc++.h> using namespace std; int main() { int n; s ...

  5. 了解java内存回收机制-博客导读

    此文作为读优质博客前的导读文 1.如何判断对象是否该回收 该对象是否被引用,是否处于不可达状态 2.对象的引用机制 强引用.软引用.弱引用.虚引用 3.垃圾回收机制如何回收.算法. 串行回收.并行回收 ...

  6. ajax跨域上传图片

    前台页面 var data = new FormData(); data.append('file', file); data.append('app', 'goods'); $.ajax({ url ...

  7. 引用类型 (Reference Type Matters)、扩展与派发方式

    引用类型 (Reference Type Matters) 引用的类型决定了派发的方式. 这很显而易见, 但也是决定性的差异. 一个比较常见的疑惑, 发生在一个协议拓展和类型拓展同时实现了同一个函数的 ...

  8. 【原创】如何编写c#用户登陆后用户名在前台显示

    这种肯定是判断session啦!!!!! @{ string username = (string)Session["username"]; user user = new use ...

  9. SpringCloud 微服务框架

    学习资源:https://ke.qq.com/course/280057 知识体系分为以下几点: 1)使用Eureka搭建注册中心,包括 服务生产者.服务消费者(也称服务注册与发现): Zookeep ...

  10. CAD参数绘制多行文字(网页版)

    在CAD设计时,需要绘制多行文字,用户可以设置设置绘制文字的高度等属性. 主要用到函数说明: _DMxDrawX::DrawMText 绘制一个多行文字.详细说明如下: 参数 说明 DOUBLE dP ...