问题描述

  雷雷承包了很多片麦田,为了灌溉这些麦田,雷雷在第一个麦田挖了一口很深的水井,所有的麦田都从这口井来引水灌溉。
  为了灌溉,雷雷需要建立一些水渠,以连接水井和麦田,雷雷也可以利用部分麦田作为“中转站”,利用水渠连接不同的麦田,这样只要一片麦田能被灌溉,则与其连接的麦田也能被灌溉。
  现在雷雷知道哪些麦田之间可以建设水渠和建设每个水渠所需要的费用(注意不是所有麦田之间都可以建立水渠)。请问灌溉所有麦田最少需要多少费用来修建水渠。

输入格式

  输入的第一行包含两个正整数n, m,分别表示麦田的片数和雷雷可以建立的水渠的数量。麦田使用1, 2, 3, ……依次标号。
  接下来m行,每行包含三个整数ai,
bi, ci,表示第ai片麦田与第bi片麦田之间可以建立一条水渠,所需要的费用为ci

输出格式

  输出一行,包含一个整数,表示灌溉所有麦田所需要的最小费用。

样例输入

4 4
1 2 1
2 3 4
2 4 2
3 4 3

样例输出

6

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector> using namespace std; const int maxn = + ;
const int maxe = + ;
const int inf = 0x3f3f3f3f; struct Edge{
int u, v, cost;
Edge(){}
Edge(int u, int v, int c) :u(u), v(v), cost(c){}
// bool operator < (const Edge& rhs){
// return cost < rhs.cost;
// }
}; int n, m;
int p[maxn];
Edge e[maxe]; int find(int x){ return x == p[x] ? x : p[x] = find(p[x]); }
int cmp(const Edge& e1, const Edge& e2){ return e1.cost < e2.cost; } void Kruskal(){
for (int i = ; i <= n; ++i) p[i] = i;
sort(e, e + m, cmp); int ans = ;
for (int i = ; i < m; ++i){
int u = find(e[i].u), v = find(e[i].v), w = e[i].cost;
if (u != v){
p[u] = v;
ans += w;
}
} cout << ans << endl;
} int main(){
cin >> n >> m;
for (int i = ; i < m; ++i){
int u, v, w;
cin >> u >> v >> w;
e[i] = Edge(u, v, w);
}
Kruskal();
return ;
}

最优灌溉_最小生成树Kruskal的更多相关文章

  1. CCF系列之最优灌溉(201412-4)

    试题编号:201412-4试题名称:最优灌溉时间限制: 1.0s内存限制: 256.0MB 问题描述 雷雷承包了很多片麦田,为了灌溉这些麦田,雷雷在第一个麦田挖了一口很深的水井,所有的麦田都从这口井来 ...

  2. CCF CSP 201412-4 最优灌溉

    CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201412-4 最优灌溉 问题描述 雷雷承包了很多片麦田,为了灌溉这些麦田,雷雷在第一个麦田挖 ...

  3. CCF 201412-4 最优灌溉

    问题描述 试题编号: 201412-4 试题名称: 最优灌溉 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 雷雷承包了很多片麦田,为了灌溉这些麦田,雷雷在第一个麦田挖了一口很 ...

  4. CCF模拟题 最优灌溉

    最优灌溉 时间限制: 1.0s 内存限制: 256.0MB   问题描述 雷雷承包了很多片麦田,为了灌溉这些麦田,雷雷在第一个麦田挖了一口很深的水井,所有的麦田都从这口井来引水灌溉. 为了灌溉,雷雷需 ...

  5. 【转】最小生成树——Kruskal算法

    [转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法 ...

  6. 模板——最小生成树kruskal算法+并查集数据结构

    并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...

  7. 最小生成树——Kruskal与Prim算法

    最小生成树——Kruskal与Prim算法 序: 首先: 啥是最小生成树??? 咳咳... 如图: 在一个有n个点的无向连通图中,选取n-1条边使得这个图变成一棵树.这就叫“生成树”.(如下图) 每个 ...

  8. 【CCF】最优灌溉 最小生成树

    [AC] #include<iostream> #include<cstdio> #include<string> #include<cstring> ...

  9. 最小生成树---Kruskal/Prime算法

    1.Kruskal算法 图的存贮采用边集数组或邻接矩阵,权值相等的边在数组中排列次序可任意,边较多的不很实用,浪费时间,适合稀疏图.      方法:将图中边按其权值由小到大的次序顺序选取,若选边后不 ...

随机推荐

  1. mysql获取子父级节点

    获取所有子节点 DROP FUNCTION IF EXISTS `F_Co29_GetAllChildrenIdsOfTaskevent`;DELIMITER //CREATE FUNCTION `F ...

  2. Chrome/谷歌开发者工具分析

    Chrome/谷歌开发者工具还是要好好掌握一下,对于前端开发超级有用:https://developers.google.com/web/tools/chrome-devtools/ 1.js内存使用 ...

  3. scrapy的allowed_domains设置含义

    设置allowed_domains的含义是过滤爬取的域名,在插件OffsiteMiddleware启用的情况下(默认是启用的),不在此允许范围内的域名就会被过滤,而不会进行爬取 但是有一个问题:像下面 ...

  4. 如何使用RDP跳过网络隔离?

    简介 本文我将向大家演示,如何通过RDP跳转盒进入隔离/受保护的网络.下图是我为该场景制作的拓扑图: 简要说明: LAN是一种扁平的工作站和服务器网络. 一些服务器(包括RDP跳转盒)无法与Inter ...

  5. Dubbo和Spring集成Demo

    Zookeeper安装和启动 http://mirrors.hust.edu.cn/apache/zookeeper/下载,我的版本是 3.4.5. 解压到 D:\zookeeper-3.4.5 配置 ...

  6. 《C++ Primer Plus》学习笔记9

    <C++ Primer Plus>学习笔记9 第15章 友元.异常和其他 <<<<<<<<<<<<<<& ...

  7. 一次mysql优化经历

    某日运维突然说无线终端的频道页接口訪问量非常大,memcache缓存扛只是来.导致mysql并发查询量太大,导致server不停地宕机,仅仅能不停地重新启动机器.遗憾的是运维并没有告诉mysql查询量 ...

  8. NDK编译STL

    方法: 1.在jni目录下新建Application.mk; 加入 APP_STL :=  stlport_static  右边的值还可以换成下面几个: system - 使用默认最小的C++运行库, ...

  9. 模拟 nbut1225 NEW RDSP MODE I

    传送门:点击打开链接 题意:输入n.m,x.刚開始有一个1~n的排列.然后定义了一种操作.是将数组中的偶数位数字选出来,依照顺序放到数组最前面,奇数位依照顺序放到偶数位的后面,进行m次这种操作.输出之 ...

  10. alsa声卡切换

    环境 ubuntu12.04 因为桌面版的默认装了,而且调声音也很方便,这里说一下server版下的配置,毕竟做开发经常还是用server版的 1.安装 apt-get install alsa-ba ...