bzoj2144
二分+lca
我们把向中间缩看成向上爬,向两边走看成向下爬,那么就相当于找出两个状态的lca,如果相邻的差是(a,b),a<b,那么向中间走就是(a,b-a)或(b-a,a),这个东西很像更相减损术,那么我们直接用(b-1)/a算出来要走的步数,然后继续递归求lca,直到走不了为止。先爬inf步判断是否有共同的祖先,然后将比较深的爬到同一高度,然后二分爬的步数,每次求lca就行了。
思路很奇妙啊
#include<bits/stdc++.h>
using namespace std;
struct data {
int a[];
data() { memset(a, , sizeof(a)); }
bool friend operator != (const data &a, const data &b) {
for(int i = ; i < ; ++i) if(a.a[i] != b.a[i]) return true;
return false;
}
};
int dd, s1, s2;
int a[], b[];
data lca(int *a, int d)
{
data ret;
int t1 = a[] - a[], t2 = a[] - a[];
for(int i = ; i < ; ++i) ret.a[i] = a[i];
if(t1 == t2) return ret;
if(t1 < t2)
{
int tmp = min(d, (t2 - ) / t1);
d -= tmp;
dd += tmp;
ret.a[] += tmp * t1;
ret.a[] += tmp * t1;
}
else
{
int tmp = min(d, (t1 - ) / t2);
d -= tmp;
dd += tmp;
ret.a[] -= tmp * t2;
ret.a[] -= tmp * t2;
}
return d ? lca(ret.a, d) : ret;
}
int main()
{
for(int i = ; i < ; ++i) scanf("%d", &a[i]);
for(int i = ; i < ; ++i) scanf("%d", &b[i]);
sort(a, a + );
sort(b, b + );
data t1 = lca(a, 1e9);
s1 = dd;
dd = ;
data t2 = lca(b, 1e9);
s2 = dd;
dd = ;
if(t1 != t2)
{
puts("NO");
return ;
}
if(s1 < s2)
{
swap(s1, s2);
for(int i = ; i < ; ++i) swap(a[i], b[i]);
}
t1 = lca(a, s1 - s2);
for(int i = ; i < ; ++i) a[i] = t1.a[i];
int l = , r = 1e9, ans = ;
while(r - l > )
{
int mid = (l + r) >> ;
if(lca(a, mid) != lca(b, mid)) l = mid;
else r = ans = mid;
}
if(ans && !(lca(a, ans - ) != lca(b, ans - ))) --ans;
printf("YES\n%d\n", s1 - s2 + * ans);
return ;
}
bzoj2144的更多相关文章
- [BZOJ1602&BZOJ1787&BZOJ2144]树上LCA的算法巩固练习
简述求LCA的倍增算法 对于树上的所有节点,我们可以很轻松地通过dfs求出其直接的父亲节点以及其深度 通过类似RMQ的原理我们可以处理出每个节点的第2^i个父亲 //这个过程既可以在dfs之后双重循环 ...
- bzoj2144 跳跳棋 二分
[bzoj2144]跳跳棋 Description 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位 ...
- BZOJ2144: 跳跳棋
传送门 神题一道. 考虑题目性质.首先对于一个状态,只存在四种情况,即最左/右边的点跳到中间,中间的点跳到左/右.而对于一个状态,显然第一种情况的两种分支不能同时存在,那么题目就可以理解为从$(a,b ...
- bzoj2144 【国家集训队2011】跳跳棋
Description 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他 ...
- 【BZOJ2144】Throw 数论
题目大意 给你三个数\(a,b,c\),每次你可以选择一个数\(s_1\),再选择一个数\(s_2\),把\(s_1\)变成\(2s_2-s_1\),但要求\(s_3\)不在\(s_1\)到\(2s_ ...
- BZOJ2144跳跳棋——LCA+二分
题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子.我们用跳跳棋来做一个简单的 游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他们的位置移动 ...
- bzoj2144: 跳跳棋(二分/倍增)
思维好题! 可以发现如果中间的点要跳到两边有两种情况,两边的点要跳到中间最多只有一种情况. 我们用一个节点表示一种状态,那么两边跳到中间的状态就是当前点的父亲,中间的点跳到两边的状态就是这个点的两个儿 ...
- 【bzoj2144】跳跳棋
2144: 跳跳棋 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 492 Solved: 244[Submit][Status][Discuss] ...
- [BZOJ2144]国家集训队 跳跳棋
题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他们的位置移动 ...
随机推荐
- Linux最常用的命名
一.环境配置 vim /etc/sysconfig/network-scripts/ifcfg-eth0 vim /etc/sysconfig/network vim /etc/hostname vi ...
- Linux查看系统状态命令top
用法 top 自动刷新系统状态,要结束使用[Ctrl]+[C] 效果图: 信息解释(转自百度经验http://jingyan.baidu.com/article/4d58d5412917cb9dd4e ...
- iOS App 项目:会员卡管理系统设计方案
1.需求描写叙述 店主须要管理自己的会员信息和充值卡信息以及消费纪录 店主觉得购买电脑和外设成本太高,并且店面没有地方容纳这些设备 店主希望通过手机来完毕这些功能.但尽量不产生流量.对网络要求较低 店 ...
- C#代码调用页面javascript函数
C#代码调用javascript函数 前台<%@ Page Language="C#" AutoEventWireup="true" CodeFile ...
- virtualenv 配置python3环境
virtualenv -p /usr/bin/python3 py3env source py3env/bin/activate pip install package-name
- leetcode最长递增子序列问题
题目描写叙述: 给定一个数组,删除最少的元素,保证剩下的元素是递增有序的. 分析: 题目的意思是删除最少的元素.保证剩下的元素是递增有序的,事实上换一种方式想,就是寻找最长的递增有序序列.解法有非常多 ...
- iOS常用网络库收集
一 ASIHttpRequest二 AFNetworking 三 AFDownloadRequestOperationA progressive download operation for AFNe ...
- MongoDB与MySQL的插入性能测试【转】
1.1 MongoDB的简单介绍 在当今的数据库市场上,MySQL无疑是占有一席之地的.作为一个开源的关系型数据库,MySQL被大量应用在各大网站后台中,承担着信息存储的重要作用.2009年,甲骨文 ...
- 为什么说JAVA中要慎重使用继承 C# 语言历史版本特性(C# 1.0到C# 8.0汇总) SQL Server事务 事务日志 SQL Server 锁详解 软件架构之 23种设计模式 Oracle与Sqlserver:Order by NULL值介绍 asp.net MVC漏油配置总结
为什么说JAVA中要慎重使用继承 这篇文章的主题并非鼓励不使用继承,而是仅从使用继承带来的问题出发,讨论继承机制不太好的地方,从而在使用时慎重选择,避开可能遇到的坑. JAVA中使用到继承就会有两 ...
- PHP生成excel(1)
先到PHPExcel官网下载PHPExcel类 http://phpexcel.codeplex.com/ 把excel类包含进来,然后直接使用 <?php require "./PH ...