#6173. Samjia 和矩阵

题目链接  : 点这里

题目描述

给你一个只包含大写字母的矩阵,求有多少本质不同的子矩阵。

输入格式

第一行包含两个整数 nnn , mmm ,表示矩阵 nnn 行 mmm 列 。
接下来 nnn 行描述这个矩阵。

输出格式

只含一个整数,为本质不同的子矩阵个数。

样例

样例输入

3 3
ABA
BAA
AAA

样例输出

22

数据范围与提示

对于 10% 10\%10% 的数据,n,m≤10 n,m \leq 10n,m≤10;
对于 40% 40\%40% 的数据,n,m≤25 n,m \leq 25n,m≤25;
对于 70% 70\%70% 的数据,n,m≤60 n,m \leq 60n,m≤60;
对于 100% 100\%100% 的数据,n,m≤110 n,m \leq 110n,m≤110。

题解:

  

  

来自wannafly

#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
typedef unsigned long long ULL;
const long long INF = 1e18+1LL;
const double pi = acos(-1.0);
const int N = 2e4+, M = 1e3+,inf = 2e9; int *ran,r[N],sa[N],height[N],wa[N],wb[N],wm[N];
bool cmp(int *r,int a,int b,int l) {
return r[a] == r[b] && r[a+l] == r[b+l];
}
void SA(int *r,int *sa,int n,int m) {
int *x=wa,*y=wb,*t;
for(int i=;i<m;++i)wm[i]=;
for(int i=;i<n;++i)wm[x[i]=r[i]]++;
for(int i=;i<m;++i)wm[i]+=wm[i-];
for(int i=n-;i>=;--i)sa[--wm[x[i]]]=i;
for(int i=,j=,p=;p<n;j=j*,m=p){
for(p=,i=n-j;i<n;++i)y[p++]=i;
for(i=;i<n;++i)if(sa[i]>=j)y[p++]=sa[i]-j;
for(i=;i<m;++i)wm[i]=;
for(i=;i<n;++i)wm[x[y[i]]]++;
for(i=;i<m;++i)wm[i]+=wm[i-];
for(i=n-;i>=;--i)sa[--wm[x[y[i]]]]=y[i];
for(t=x,x=y,y=t,i=p=,x[sa[]]=;i<n;++i) {
x[sa[i]]=cmp(y,sa[i],sa[i-],j)?p-:p++;
}
}
ran=x;
}
void Height(int *r,int *sa,int n) {
for(int i=,j=,k=;i<n;height[ran[i++]]=k)
for(k?--k:,j=sa[ran[i]-];r[i+k] == r[j+k];++k);
} const ULL mod = 10000019ULL;
int n,m;
ULL sqr[],has[][];
char a[][];
map<ULL,int >mp;
int main() {
sqr[] = ;
for(int i = ; i <= ; ++i) sqr[i] = sqr[i-] * mod;
scanf("%d%d",&n,&m);
for(int i = ; i <= n; ++i) {
scanf("%s",a[i]+);
has[i][] = ;
for(int j = ; j <= m; ++j) {
has[i][j] = has[i][j-] * mod + a[i][j] - 'A' + ;
}
}
LL ans = ;
for(int y = ; y <= m; ++y) {
int cnt = ,san = ;
mp.clear();
for(int j = ; j + y - <= m; ++j) {
for(int i = ; i <= n; ++i){
int l = j, rr = j + y - ;
ULL now = has[i][rr] - has[i][l-]*sqr[y];
if(mp[now] == ) mp[now] = san++;
r[cnt++] = mp[now];
}
r[cnt++] = san++;
}
r[cnt] = ; SA(r,sa,cnt+,san);
Height(r,sa,cnt);
//for(int i = 0; i <= cnt; ++i) cout<<sa[i]<<" "<<ran[i]<<" "<<height[i]<<endl;
// return 0;
ans += n*(n+)/*(m-y+); for(int i = ; i <= cnt; ++i) {
ans -= height[i];
}
}
printf("%lld\n",ans);
return ;
}

liberOJ #6173. Samjia 和矩阵 hash+后缀数组的更多相关文章

  1. loj6173 Samjia和矩阵(后缀数组/后缀自动机)

    题目: https://loj.ac/problem/6173 分析: 考虑枚举宽度w,然后把宽度压位集中,将它们哈希 (这是w=2的时候) 然后可以写一下string=“ac#bc” 然后就是求这个 ...

  2. [USACO07DEC]Best Cow Line G 字符串hash || 后缀数组

    [USACO07DEC]Best Cow Line G [USACO07DEC]Best Cow Line G 小声哔哔:字符串hash牛逼 题意 给出一个字符串,每次可以从字符串的首尾取出一个字符, ...

  3. Samjia 和矩阵[loj6173](Hash+后缀数组)

    传送门 本题要求本质不同的子矩阵,即位置不同也算相同(具体理解可以看样例自己yy). 我们先看自己会什么,我们会求一个字符串中不同的子串的个数.我们考虑把子矩阵变成一个字符串. 先枚举矩阵的宽度,记为 ...

  4. BZOJ 2119: 股市的预测 (Hash / 后缀数组 + st表)

    转博客大法好 自己画一画看一看,就会体会到这个设置关键点的强大之处了. CODE(sa) O(nlogn)→1436msO(nlogn)\to 1436msO(nlogn)→1436ms #inclu ...

  5. HDU-4622 Reincarnation 后缀数组 | Hash,维护和,扫描

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4622 题意:给一个字符串,询问某字串的不同字串的个数. 可以用后缀数组来解决,复杂度O(n).先求出倍 ...

  6. UVALive - 4513 Stammering Aliens ——(hash+二分 || 后缀数组加二分)

    题意:找一个出现了m次的最长子串,以及这时的最右的位置. hash的话代码还是比较好写的,,但是时间比SA多很多.. #include <stdio.h> #include <alg ...

  7. Uva12206 Stammering Aliens 后缀数组&&Hash

    Dr. Ellie Arroway has established contact with an extraterrestrial civilization. However, all effort ...

  8. Hash(LCP) || 后缀数组 LA 4513 Stammering Aliens

    题目传送门 题意:训练指南P225 分析:二分寻找长度,用hash值来比较长度为L的字串是否相等. #include <bits/stdc++.h> using namespace std ...

  9. acdream1116 Gao the string!(hash二分 or 后缀数组)

    问题套了一个斐波那契数,归根结底就是要求对于所有后缀s[i...n-1],所有前缀在其中出现的总次数.我一开始做的时候想了好久,后来看了别人的解法才恍然大悟.对于一个后缀来说 s[i...n-1]来说 ...

随机推荐

  1. hlg 1580 tell me the length

    智力题,观察上一行,有几个数字. 比如,S[1]=1; S[2]=11; S[3]=21; S[4]=1211; 这样就可以观察出来,序列一是1个1 --->  S[2] = 11 ; 序列二是 ...

  2. LINQ-查询表达式基础

    一.LINQ查询的数据源 从应用程序的角度来看,原始源数据的特定类型和结构并不重要. 应用程序始终将源数据视为 IEnumerable<T> 或 IQueryable<T> 集 ...

  3. git 本地保存账号密码

    用ssh连接的项目都不用输账号密码 如果https的话   每次都用输入账号密码   很繁琐 解决方法,在本地的工程文件夹的.git下打开config文件添加: [credential]     he ...

  4. [LA3620]Manhattan Wiring

    [LA3620]Manhattan Wiring 试题描述 输入 输出 输入示例 输出示例 数据规模及约定 见“输入” 题解 我们把“连线”的过程改为“铺地砖”的过程,总共有 11 种地砖,每种地砖上 ...

  5. Aspose.Words使用代码插入表格

    Aspose.Words是一款功能强大的word文档处理控件,在不需要安装word的条件下,可进行word的创建,修改,转换等操作. Aspose.Words可以简单使用该产品提供的DocumentB ...

  6. Fragment的广播消息接收

    这种方式不用在配置文件加东西 广播注册,可以写在Activity(onCreate),也可以写在Fragment(onActivityCreated)里. LocalBroadcastManager ...

  7. PSO(Thepopularity-similarity-oplimization) modol

    PSO(Thepopularity-similarity-oplimization) modol 在这篇文章里,我们试图将社交关系构成的网络结构从纷繁复杂的具体场景.细节条件中剥离出来,单单从个体间连 ...

  8. eslint 在webstorm配置

    1.安装nodejs和eslint 2.在 webstorm 的 file - setting搜索eslint,配置eslint路径 3.在项目目录下新建.eslintrc文件 4.配置eslint ...

  9. 安装Django时解决的问题-mysql及访问(附pycharm激活)

    1.做些软链接和virtualenv的基本使用: ln -s /data/linkdood/im/vrv/python36/bin/python3.6 /usr/bin/python3 ln -s / ...

  10. avi视频文件提取与合并

    最近在做一个avi视频文件的提取与合并,花了几天熟悉avi文件格式.制作了一个提取与合并的动态库,不过仅限于提取视频,视频的合并还没添加一些额外判断,可能导致不同分辨率的视频文件合成后不能播放.欢迎大 ...