题目:假如有A,B两个人,在一个m*n的矩阵,然后A在(1,1),B在(m,1),A要走到(m,n),B要走到(1,n),两人走的过程中可以捡起格子上的数字,而且两人速度不一样,可以同时到一个点(哪怕这个点离A很近,离B很远),现在A,B起码相遇于一个点点,相遇点的数字A,B都得不到,求最后A,B总数字之和的最大值

B. Working out
Summer is coming! It's time for Iahub and Iahubina to work out, as they both want to look hot at the beach. The gym where they go is a matrix
a with n lines and
m columns. Let number
a[i][j] represents the calories burned by performing workout at the cell of gym in the
i-th line and the j-th column.
Iahub starts with workout located at line 1 and column
1. He needs to finish with workout
a[n][m]. After finishing workout
a[i][j], he can go to workout
a[i + 1][j] or a[i][j + 1]. Similarly, Iahubina starts with workout
a[n][1] and she needs to finish with workout
a[1][m]. After finishing workout from cell
a[i][j], she goes to either
a[i][j + 1] or
a[i - 1][j].
There is one additional condition for their training. They have to meet in exactly one cell of gym. At that cell, none of them will work out. They will talk about fast exponentiation (pretty odd small talk) and then both of them will move to the next workout.
If a workout was done by either Iahub or Iahubina, it counts as total gain. Please plan a workout for Iahub and Iahubina such as total gain to be as big as possible. Note, that Iahub and Iahubina can perform workouts with different speed, so the number of
 cells that they use to reach meet cell may differs.
Input
The first line of the input contains two integers n and
m (3 ≤ n, m ≤ 1000). Each of the next
n lines contains m integers:
j-th number from i-th line denotes element
a[i][j] (0 ≤ a[i][j] ≤ 105).
Output
The output contains a single number — the maximum total gain possible.
Sample test(s)
Input
3 3
100 100 100
100 1 100
100 100 100
 
Output
800
/*
思路:
要找最大值,那么只能有一个相遇点
如果用两个数组再来枚举相遇点是不可能的
所以比如说左上到右下,可以换成左上到相遇点,右下到相遇点
另一条路线也是如此 枚举各种可能的相交点,那么从左下角走到相交点或者从左上角走到
相交点的各种情况很容易用for写出来
可是从相交点到终点不好写,因为相交点是枚举的,
相当于未知,
逆向思维:从相交点到终点==从终点到相交点
而终点只有两个,递推就是要从已知到未知
那么这题就转换成从四个边角点到未知点
*/
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll maxn=+;
ll f[maxn][maxn]={},dp1[maxn][maxn],dp2[maxn][maxn],dp3[maxn][maxn],dp4[maxn][maxn];
int main()//定义数组f存基础数字,dp1代表从左上角递推
//dp2左下角,dp3右下角,dp4右上角
{
//输入环节
ll m,n;
cin>>m>>n;
for(ll i=;i<=m;i++)
for(ll j=;j<=n;j++)
{
scanf("%lld",&f[i][j]);
} //处理环节
dp1[][]=f[][];//对dp1边缘赋值,即左边和上边两面墙赋入初始值
for(ll i=;i<=m;i++)
dp1[i][]+=f[i][]+dp1[i-][];
for(ll j=;j<=n;j++)
dp1[][j]+=f[][j]+dp1[][j-]; dp2[m][]=f[m][];//对dp2边缘赋值
for(ll i=m-;i>=;i--)
dp2[i][]+=f[i][]+dp2[i+][];
for(ll j=;j<=n;j++)
dp2[m][j]+=f[m][j]+dp2[m][j-]; dp4[][n]=f[][n];//对dp4边缘赋值
for(ll i=;i<=m;i++)
dp4[i][n]+=f[i][n]+dp4[i-][n];
for(ll j=n-;j>=;j--)
dp4[][j]+=f[][j]+dp4[][j+]; dp3[m][n]=f[m][n];//对dp3边缘赋值
for(ll i=m-;i>=;i--)
dp3[i][n]+=f[i][n]+dp3[i+][n];
for(ll j=n-;j>=;j--)
dp3[m][j]+=f[m][j]+dp3[m][j+]; for(ll i=;i<=m;i++)//让i从2到m,j从2到n
for(ll j=;j<=n;j++)//下面再通过调一下下标与i,j的关系实现同时处理四个数组
{
dp1[i][j]+=f[i][j]+max(dp1[i-][j],dp1[i][j-]);
dp4[i][n-j+]+=f[i][n-j+]+max(dp4[i][n-j++],dp4[i-][n-j+]);
dp2[m-i+][j]+=f[m-i+][j]+max(dp2[m-i++][j],dp2[m-i+][j+]);
dp3[m-i+][n-j+]+=f[m-i+][n-j+]+max(dp3[m-i++][n-j+],dp3[m-i++][n-i++]);
}//dp1从左下角开始递推,dp2,3,4也从其他三个角开始递推
ll ans=;
for(ll i=;i<=m;i++)//这里两个for循环枚举相遇点
for(ll j=;j<=n;j++)
{
ans=max(ans,dp1[i][j]+dp2[i][j]+dp3[i][j]+dp4[i][j]-*f[i][j]);
}//如果[i][j]是相遇点,那么f[i][j]在dp1,dp2,dp3,dp4都被多拿了
//(相遇点的数字不能拿,所以要减去4*f[i][j])
cout<<ans<<endl;
return ;
/*********************这里预备一串代码输出dp1到dp4后来的具体情况
可以自己用来检验dp1到dp4是否和自己想想的结果一样
printf("\n");
for(ll i=1;i<=m;i++)
for(ll j=1;j<=n;j++)
{
printf("%lld ",dp1[i][j]);
if(j==3)printf("\n");
}
printf("\n");
for(ll i=1;i<=m;i++)
for(ll j=1;j<=n;j++)
{
printf("%lld ",dp2[i][j]);
if(j==3)printf("\n");
}
printf("\n");
for(ll i=1;i<=m;i++)
for(ll j=1;j<=n;j++)
{
printf("%lld ",dp3[i][j]);
if(j==3)printf("\n");
}printf("\n");
for(ll i=1;i<=m;i++)
for(ll j=1;j<=n;j++)
{
printf("%lld ",dp4[i][j]);
if(j==3)printf("\n");
}printf("\n");
************************/ }

四角递推(CF Working out,动态规划递推)的更多相关文章

  1. 最长上升子序列(动态规划递推,LIS)

    1759:最长上升子序列 题目: 总时间限制: 2000ms 内存限制: 65536kB 描述 一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的 ...

  2. 最大子段和(洛谷P1115,动态规划递推)

    洛谷题目链接 题目赋值出来格式有问题,所以我就只放题目链接了 下面为ac代码 #include<bits/stdc++.h> #define ll long long using name ...

  3. 【Luogu4723】线性递推(常系数齐次线性递推)

    [Luogu4723]线性递推(常系数齐次线性递推) 题面 洛谷 题解 板子题QwQ,注意多项式除法那里每个多项式的系数,调了一天. #include<iostream> #include ...

  4. 推送通知/传感器/UIDynamic仿真(推送通知已适配iOS10)

    推送通知/传感器/UIDynamic 一.推送通知 1.推送通知简介 什么是推送通知 此处的推送通知与NSNotification没有任何关系 可以理解为,向用户推送一条信息来通知用户某件事情 作用: ...

  5. iOS的推送机制APNs:本地推送&远程推送

    本地推送: 本地推送主要应用在备忘录,闹钟等本地的,基于时间定时的消息提醒.本篇不做详细描述. 远程推送:APNS(苹果推送通知服务) iOS远程推送机制的原理及流程: 注册推送(橙色部分):若该Ap ...

  6. 与众不同 windows phone (9) - Push Notification(推送通知)之概述, 推送 Toast 通知

    原文:与众不同 windows phone (9) - Push Notification(推送通知)之概述, 推送 Toast 通知 [索引页][源码下载] 与众不同 windows phone ( ...

  7. Windows Phone开发(43):推送通知第一集——Toast推送

    原文:Windows Phone开发(43):推送通知第一集--Toast推送 好像有好几天没更新了,抱歉抱歉,最近"光荣"地失业,先是忙于寻找新去处,唉,暂时没有下文.而后又有一 ...

  8. 推送之HelloWorld及个推Smart Push

    最近有个朋友想要推送一些消息到自己的APP上,自己用了HTTP轮询的方式比较耗电,也比较占用流量,一旦用户关闭了进程,消息则很难触达,于是,咨询我有没有什么好的解决方案.我告诉他其实可以使用推送,他瞪 ...

  9. java推送数据到app--极光推送

    之前项目有用到需要把数据推送到app端 采用的是极光推送 特此把工具类和pom.xml需要的jar整理如下 pom.xml需要jar如下 <!-- 极光推送 --> <depende ...

随机推荐

  1. HDU 5475An easy problem 离线set/线段树

    An easy problem Time Limit: 8000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  2. update-java-alternatives 更改默认Java环境

    Ubuntu/debian 更改默认Java环境 我的电脑里安装了两个版本的Java,一个是java-6-sun,还有一个是java-gcjgcj是在JVM非常缓慢的时候诞生的,他可以把Java代码编 ...

  3. 8-12 canvas专题-阶段练习一(上)

    8-12 canvas专题-阶段练习一(上) <!DOCTYPE html> <html lang="zh-cn"> <head> <me ...

  4. 频繁项集------->产生强关联规则的过程

    频繁项集------->产生强关联规则的过程 1.由Apriori算法(当然别的也可以)产生频繁项集 2.根据选定的频繁项集,找到它所有的非空子集 3.强关联规则需要满足最小支持度和最小置性度  ...

  5. Linux 系统管理命令 - uptime - 显示系统的运行时间及负载

    命令详解 重要星级: ★★★☆☆ 功能说明: uptime 命令可以输出当前系统时间.系统开机到现在的运行时间.目前有多少用户在线和系统平均负载等信息 语法格式: uptime 说明: 直接执行 up ...

  6. 0623-TP框架整理一(下载、入口文件、路由、创建控制器、调用模板、系统常量、命名空间)

    一.下载解压后用ThinkPHP(核心)文件 核心文件夹(ThinkPHP)不要改,是作用于全局的,有需要可以改应用目录(Application) 二.创建入口文件: 运行后出现欢迎界面,在说明系统自 ...

  7. MARK ZUCKERBERG, A letter to our daughter(转)

    A letter to our daughter   MARK ZUCKERBERG·WEDNESDAY, DECEMBER 2, 2015   Dear Max, Your mother and I ...

  8. 【转】20道Spring Boot面试题

    面试了少量人,简历上都说自己熟习 Spring Boot, 或者者说正在学习 Spring Boot,一问他们时,都只停留在简单的使用阶段,很多东西都不清楚,也让我对面试者大失所望. 下面,我给大家总 ...

  9. Java多线程(九) synchronized 锁对象的改变

    public class MyService { private String lock = "123"; public void testMethod() { synchroni ...

  10. virtualwrapper使用

    1.创建: mkvirtualenv 虚拟环境目录 2.查看虚拟环境 workon lsvirtualenv 3.进入虚拟环境 workon 虚拟环境目录 4.退出虚拟环境 deactivate 5. ...