Chat Group gym101775A(逆元,组合数)
题意:一个宿舍中又n个人,最少k(k >= 3)个人就可以建一个讨论组,问最多可以建多少个不同的讨论组。
思路:求组合数的和,因为涉及除法取余,所以要求逆元来解题。
虽然之前看到过有关逆元的知识,但是一直没有弄明白逆元的应用。嗯~~挖下的坑终于把自己给坑了。这次认栽!!
最终的结果是:C(n,k)+C(n,k+1)+.......+C(n,n) = 2^n - ( C(n,0) + C(n,1) + C(n,2) + ......+C(n,k-1)
(a / b)%mod = a % mod *(b关于模mod的逆元);
复习逆元相关知识:Click hear
代码:
费马小定理求逆元法:
#include <bits/stdc++.h>
using namespace std;
const int MOD = 1e9+;
const int maxn = 1e5;
typedef long long ll;
int n,k;
ll qpow(ll a,ll b)
{
ll res = ;
while(b)
{
if(b&)
res = res*a%MOD;
a = a*a%MOD;
b>>=;
}
return res;
} int main()
{
int T,cnt = ;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&k);
ll c = ;
ll sum = ;
for(int i = ; i<=k-; i++)
{
c = ((c*(n-i+)%MOD)*qpow(i,MOD-))%MOD;
sum = (sum + c)%MOD;
}
ll M = qpow(,n) - ;
printf("Case #%d: %lld\n",++cnt,(M - sum + MOD)%MOD);//将结果转为正数
}
return ;
}
线性求逆元:
#include <bits/stdc++.h>
using namespace std;
const int MOD = 1e9+;
const int maxn = 1e5;
typedef long long ll;
int n,k;
ll qpow(ll a,ll b)
{
ll res = ;
while(b)
{
if(b&)
res = res*a%MOD;
a = a*a%MOD;
b>>=;
}
return res;
}
ll inv[maxn]; void getInv()
{
inv[] = ;
for(int i = ; i<maxn; i++)
{
inv[i] = (MOD-MOD/i)*inv[MOD%i]%MOD;
}
} int main()
{
int T,cnt = ;
scanf("%d",&T);
while(T--)
{
getInv();
scanf("%d%d",&n,&k);
ll c = ;
ll sum = ;
for(int i = ; i<=k-; i++)
{
c = (c*(n-i+)%MOD*inv[i])%MOD;
sum = (sum + c)%MOD;
}
ll M = qpow(,n) - ;
printf("Case #%d: %lld\n",++cnt,(M - sum + MOD)%MOD);
}
return ;
}
Chat Group gym101775A(逆元,组合数)的更多相关文章
- A - Chat Group Gym-101775A
题目连接:https://codeforces.com/gym/101775/problem/A 题解:就是累加组合数 但是直接由K累加到N肯定会TLE ,所以我们不妨判断不能组成group的情况,即 ...
- Gym - 101775A Chat Group 组合数+逆元+快速幂
It is said that a dormitory with 6 persons has 7 chat groups ^_^. But the number can be even larger: ...
- Gym 101775A - Chat Group - [简单数学题][2017 EC-Final Problem A]
题目链接:http://codeforces.com/gym/101775/problem/A It is said that a dormitory with 6 persons has 7 cha ...
- 组合数+逆元 A - Chat Group Gym - 101775A
题目链接:https://cn.vjudge.net/contest/274151#problem/A 具体思路:我们可以先把所有的情况算出来,为2^n.然后不合法的情况减去就可以了.注意除法的时候要 ...
- UVALive 7040 Color (容斥原理+逆元+组合数+费马小定理+快速幂)
题目:传送门. 题意:t组数据,每组给定n,m,k.有n个格子,m种颜色,要求把每个格子涂上颜色且正好适用k种颜色且相邻的格子颜色不同,求一共有多少种方案,结果对1e9+7取余. 题解: 首先可以将m ...
- Bzoj 1856: [Scoi2010]字符串 卡特兰数,乘法逆元,组合数,数论
1856: [Scoi2010]字符串 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1194 Solved: 651[Submit][Status][ ...
- HDU 6114 Chess【逆元+组合数】(组合数模板题)
<题目链接> 题目大意: 車是中国象棋中的一种棋子,它能攻击同一行或同一列中没有其他棋子阻隔的棋子.一天,小度在棋盘上摆起了许多車……他想知道,在一共N×M个点的矩形棋盘中摆最多个数的車使 ...
- HDU4869:Turn the pokers(快速幂求逆元+组合数)
题意: 给出n次翻转和m张牌,牌相同且一开始背面向上,输入n个数xi,表示xi张牌翻转,问最后得到的牌的情况的总数. 思路: 首先我们可以假设一开始牌背面状态为0,正面则为1,最后即是求ΣC(m,k) ...
- The 2018 ACM-ICPC Asia Qingdao Regional Contest(部分题解)
摘要: 本文是The 2018 ACM-ICPC Asia Qingdao Regional Contest(青岛现场赛)的部分解题报告,给出了出题率较高的几道题的题解,希望熟悉区域赛的题型,进而对其 ...
随机推荐
- Cocos2d-x 3.x 图形学渲染系列十五
笔者介绍:姜雪伟,IT公司技术合伙人,IT高级讲师,CSDN社区专家.特邀编辑,畅销书作者,国家专利发明人;已出版书籍:<手把手教你架构3D游戏引擎>电子工业出版社和<Unity3D ...
- cocos2d-x 多触点监听
[cpp] view plaincopy //首先到cocos2d-x项目下的ios目录下.找到AppController.mm文件,在函数 didFinishLaunchingWithOptions ...
- 源代码编译安装MySQL5.6.12具体过程
1 下载安装包download tar.gzwget http://download.csdn.net/detail/mchdba/75450372 安装cmake软件包yum install cm ...
- jquery 推断checkbox 是否选中
这是一个蛋疼的节奏.曾经写的代码如今失效了. jquery 推断checkbox 是否被选中,刚開始我是这样写的,并且没问题 $("#ziduana").attr("ch ...
- Knowing When to Use Override and New Keywords (C# Programming Guide)
https://msdn.microsoft.com/en-us/library/ms173153.aspx In C#, a method in a derived class can have t ...
- [BZOJ 3132] 上帝造题的七分钟
[题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=3132 [算法] 二维树状数组 [代码] #include<bits/stdc+ ...
- PCB 围绕CAM自动化,打造PCB规则引擎
AutoCAM自动化平台,前端管理订单,而后端执行任务,前端UIl界面有板厚,铜厚,板材,表面处理,层数等信息,而这些信息并不是后端最终所需要的信息后.拿钻孔补偿来说,后端需要的是钻孔补偿值,但前端并 ...
- P3398仓鼠(LCA)
题目描述 小仓鼠的和他的基(mei)友(zi)sugar住在地下洞穴中,每个节点的编号为1~n.地下洞穴是一个树形结构.这一天小仓鼠打算从从他的卧室(a)到餐厅(b),而他的基友同时要从他的卧室(c) ...
- Educational Codeforces Round 24 题解
A: 考你会不会除法 //By SiriusRen #include <bits/stdc++.h> using namespace std; #define int long long ...
- [转]Linux rpm 命令参数使用详解
转自:http://www.cnblogs.com/xiaochaohuashengmi/archive/2011/10/08/2203153.html RPM是RedHat Package Mana ...