ZOJ 3868 GCD Expectation (容斥+莫比乌斯反演)
GCD Expectation
Time Limit: 4 Seconds Memory Limit:
262144 KB
Edward has a set of n integers {a1,a2,...,an}. He randomly picks a nonempty subset {x1,x2,…,xm}
(each nonempty subset has equal probability to be picked), and would like to know the expectation of [gcd(x1,x2,…,xm)]k.
Note that gcd(x1,x2,…,xm) is the greatest common divisor of {x1,x2,…,xm}.
Input
There are multiple test cases. The first line of input contains an integerT indicating the number of test cases. For each test case:
The first line contains two integers n,k (1 ≤
n, k ≤ 106). The second line containsn integers
a1, a2,…,an (1 ≤ai ≤ 106).
The sum of values max{ai} for all the test cases does not exceed 2000000.
Output
For each case, if the expectation is E, output a single integer denotesE · (2n - 1) modulo 998244353.
Sample Input
1
5 1
1 2 3 4 5
Sample Output
42
Author: LIN, Xi
Source: The 15th Zhejiang University Programming Contest
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?
problemId=5480
题目大意:给一个集合。{xi}为它的一个非空子集。设E为[gcd(x1,x2,…,xm)]k
的期望,求E*(2^n - 1) mod 998244353
题目分析:首先一个有n个元素的集合的非空子集个数为2^n - 1,所以E的分母就是2^n - 1了。因此我们要求的仅仅是E的分子,
设F(x)为gcd(xi) = x的个数,那么ans = (1^k) * F(1) + (2^k) * F(2) + ... + (ma^k) * F(ma)
以下的问题就是怎样高速的计算F(x)了。对于一个集合,先计算出x的倍数的个数,nlogn就可以。然后就是基础的容斥。如果如今要求gcd为1的,那就减去gcd为2的,gcd为3的,注意到6同一时候是2和3的倍数,也就是6的倍数被减了两次,所以要加上gcd为6的,前面的系数刚好是数字相应的莫比乌斯函数,看到这题非常多用dp来容斥的,事实上本质和莫比乌斯函数一样,可是莫比乌斯函数写起来真的非常easy。2333333
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
using namespace std;
int const MOD = 998244353;
int const MAX = 1e6 + 5;
ll two[MAX];
int p[MAX], mob[MAX], num[MAX], cnt[MAX];
bool noprime[MAX];
int n, k, ma, pnum; void Mobius()
{
pnum = 0;
mob[1] = 1;
for(int i = 2; i < MAX; i++)
{
if(!noprime[i])
{
p[pnum ++] = i;
mob[i] = -1;
}
for(int j = 0; j < pnum && i * p[j] < MAX; j++)
{
noprime[i * p[j]] = true;
if(i % p[j] == 0)
{
mob[i * p[j]] = 0;
break;
}
mob[i * p[j]] = -mob[i];
}
}
} ll qpow(ll x, ll n)
{
ll res = 1;
while(n != 0)
{
if(n & 1)
res = (res * x) % MOD;
x = (x * x) % MOD;
n >>= 1;
}
return res;
} void pre()
{
Mobius();
two[0] = 1;
for(int i = 1; i < MAX; i++)
two[i] = two[i - 1] * 2ll % MOD;
} int main()
{
pre();
int T;
scanf("%d", &T);
while(T --)
{
memset(num, 0, sizeof(num));
memset(cnt, 0, sizeof(cnt));
ma = 0;
int tmp;
scanf("%d %d", &n, &k);
for(int i = 0; i < n; i++)
{
scanf("%d", &tmp);
cnt[tmp] ++;
ma = max(ma, tmp);
}
for(int i = 1; i <= ma; i++)
for(int j = i; j <= ma; j += i)
num[i] += cnt[j]; //求i的倍数的个数
ll ans = 0;
for(int i = 1; i <= ma; i++) //枚举gcd
{
ll sum = 0;
for(int j = i; j <= ma; j += i) //容斥
sum = (MOD + sum % MOD + mob[j / i] * (two[num[j]] - 1) % MOD) % MOD;
ans = (MOD + ans % MOD + (sum * qpow(i, k)) % MOD) % MOD;
}
printf("%lld\n", ans);
}
}
ZOJ 3868 GCD Expectation (容斥+莫比乌斯反演)的更多相关文章
- ACM学习历程—ZOJ 3868 GCD Expectation(莫比乌斯 || 容斥原理)
Description Edward has a set of n integers {a1, a2,...,an}. He randomly picks a nonempty subset {x1, ...
- 51nod 1355 - 斐波那契的最小公倍数(Min-Max 容斥+莫比乌斯反演)
vjudge 题面传送门 首先我们知道斐波那契数列的 lcm 是不太容易计算的,但是它们的 gcd 非常容易计算--\(\gcd(f_x,f_y)=f_{\gcd(x,y)}\),该性质已在我的这篇博 ...
- cf900D. Unusual Sequences(容斥 莫比乌斯反演)
题意 题目链接 Sol 首先若y % x不为0则答案为0 否则,问题可以转化为,有多少个数列满足和为y/x,且整个序列的gcd=1 考虑容斥,设\(g[i]\)表示满足和为\(i\)的序列的方案数,显 ...
- 【二分+容斥+莫比乌斯反演】BZOJ2440 完全平方数
Description 求第k个没有完全平方因子的数,k<=1e9. Solution 这其实就是要求第k个µ[i](莫比乌斯函数)不为0的数. 然而k太大数组开不下来是吧,于是这么处理. 二分 ...
- bzoj 2005 & 洛谷 P1447 [ Noi 2010 ] 能量采集 —— 容斥 / 莫比乌斯反演
题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005 洛谷 P1447 https://www.luogu.org/ ...
- zoj.3868.GCD Expectation(数学推导>>容斥原理)
GCD Expectation Time Limit: 4 Seconds Memory Limit: 262144 KB ...
- Codeforces.547C.Mike and Foam(容斥/莫比乌斯反演)
题目链接 \(Description\) 给定n个数(\(1\leq a_i\leq 5*10^5\)),每次从这n个数中选一个,如果当前集合中没有就加入集合,有就从集合中删去.每次操作后输出集合中互 ...
- HDU 5942 Just a Math Problem 容斥 莫比乌斯反演
题意:\( g(k) = 2^{f(k)} \) ,求\( \sum_{i = 1}^{n} g(i) \),其中\( f(k)\)代表k的素因子个数. 思路:题目意思很简单,但是着重于推导和简化,这 ...
- Zoj 3868 GCD Expectation
给一个集合,大小为n , 求所有子集的gcd 的期望和 . 期望的定义为 这个子集的最大公约数的K次方 : 每个元素被选中的概率是等可能的 即概率 p = (发生的事件数)/(总的事件数); 总的事件 ...
随机推荐
- Linux命令(007) -- systemctl
systemctl命令是系统服务管理指令,它实际上是将service和chkconfig两个命令组合到一起. 任务 旧指令 新指令 使某服务自动启动 chkconfig --level 3 httpd ...
- 国内使用pip / pip with GFW / pip 镜像
sudo pip install -i https://pypi.doubanio.com/simple/ YOUR_PACKAGE_NAME --trusted-host pypi.doubanio ...
- JAVA使用Ldap操作AD域
项目上遇到的需要在集成 操作域用户的信息的功能,第一次接触ad域,因为不了解而且网上其他介绍不明确,比较费时,这里记录下. 说明: (1). 特别注意:Java操作查询域用户信息获取到的数据和域管理员 ...
- [ USACO 2007 FEB ] Lilypad Pond (Silver)
\(\\\) \(Description\) 一张\(N\times M\)的网格,已知起点和终点,其中有一些地方是落脚点,有一些地方是空地,还有一些地方是坏点. 现在要从起点到终点,每次移动走日字\ ...
- EF CodeFirst 不得不说的Where与OrderBy
先来聊上5毛钱的“排序” Code: using (ApplicationDbContext Db=new ApplicationDbContext()) { var res = Db.Threes. ...
- NX自动出图 效果图
- Navicat Premium 12 破解方法
基本安装下一步下一步,破解方法参考:地址
- Codeforces_768_D_(概率dp)
D. Jon and Orbs time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...
- MFC窗体大小变化
对话框的大小变化后,假若对话框上的控件大小不变化,看起来会比较难看.下面就介绍怎么让对话框上的控件随着对话框的大小的变化自动调整. 首先明确的是Windows有一个WM_SIZE消息响应函数,这个函数 ...
- Android开发使用控件入门--环境搭建
Android开发使用控件入门--环境搭建 软件名称(,梦,,想.CAD ,控件) 1. 环境搭建: 3 1.1. 安装Eclipse 3 1.2. 下载JDK 3 1.3. 下载Android S ...