链接:https://www.nowcoder.com/acm/contest/141/J

题目描述

Eddy has graduated from college. Currently, he is finding his future job and a place to live. Since Eddy is currently living in Tien-long country, he wants to choose a place inside Tien-long country to live. Surprisingly, Tien-long country can be represented as a simple polygon on 2D-plane. More surprisingly, Eddy can choose any place inside Tien-long country to live. The most important thing Eddy concerns is the distance from his place to the working place. He wants to live neither too close nor too far to the working place. The more specific definition of "close" and "far" is related to working place
Eddy has M choices to work in the future. For each working place, it can be represented as a point on 2D-plane. And, for each working place, Eddy has two magic parameters P and Q such that if Eddy is going to work in this place, he will choose a place to live which is closer to the working place than portion of all possible living place choices.
Now, Eddy is wondering that for each working place, how far will he lives to the working place. Since Eddy is now busy on deciding where to work on, you come to help him calculate the answers.

For example, if the coordinates of points of Tien-long country is (0,0), (2,0), (2, 2), (0, 2) in counter-clockwise order. And, one possible working place is at (1,1) and P=1, Q=2. Then, Eddy should choose a place to live which is closer to (1, 1) than half of the choices. The distance from the place Eddy will live to the working place will be about 0.7978845608.

输入描述:

The first line contains one positive integer N indicating the number of points of the polygon representing Tien-long country.
Each of following N lines contains two space-separated integer (xi,yi)
indicating the coordinate of i-th points. These points is given in clockwise or counter-clockwise order and form the polygon.
Following line contains one positive integer M indicating the number of possible working place Eddy can choose from.
Each of following M lines contains four space-separated integer xj,yj,P,Q, where (xj,yj) indicating the j-th working place is at (xj,yj) and
magic parameters is P and Q.
3<=N<=200
1<=M<=200
1<=P<Q<=200
|xi||yi||xj||yj|<=1000
It's guaranteed that the given points form a simple polygon.

输出描述:

Output M lines. For i-th line, output one number indicating the distance from the place Eddy will live to the i-th working place.

Absolutely or relatively error within 10^-6 will be considered correct.

输入例子:
4
0 0
2 0
2 2
0 2
1
1 1 1 2
输出例子:
0.797884560809

-->

示例1

输入

4
0 0
2 0
2 2
0 2
1
1 1 1 2

输出

0.797884560809
示例2

输入

3
0 0
1 0
2 1
2
0 0 1 2
1 1 1 3

输出

1.040111537176
0.868735603376

题意  一个国家由n个点组成  m次询问 每次给出一个工作地点(xj,yj)  从国家里选取居住地点 要满足 选取的点比国家内Q/P的点离工作地点更近  问居住点到工作地点的距离

解析  我们可以二分答案mid 然后判断以(xj,yj)为圆心mid为半径的圆 与 国家相交的面积 与 国家面积的比值 二分下去。

AC代码   偷得模板 。。。。

 #include <bits/stdc++.h>
#define LL long long
#define PI 3.1415926535897932384626
#define maxn 1000
#define EXIT exit(0);
#define DEBUG puts("Here is a BUG");
#define CLEAR(name, init) memset(name, init, sizeof(name))
const double eps = 1e-;
const int MAXN = (int)1e9 + ;
using namespace std;
#define Vector Point
int dcmp(double x) { return fabs(x) < eps ? : (x < ? - : ); }
struct Point {
double x, y; Point(const Point& rhs): x(rhs.x), y(rhs.y) { } //拷贝构造函数
Point(double x = 0.0, double y = 0.0): x(x), y(y) { } //构造函数 friend istream& operator >> (istream& in, Point& P) { return in >> P.x >> P.y; }
friend ostream& operator << (ostream& out, const Point& P) { return out << P.x << ' ' << P.y; } friend Vector operator + (const Vector& A, const Vector& B) { return Vector(A.x+B.x, A.y+B.y); }
friend Vector operator - (const Point& A, const Point& B) { return Vector(A.x-B.x, A.y-B.y); }
friend Vector operator * (const Vector& A, const double& p) { return Vector(A.x*p, A.y*p); }
friend Vector operator / (const Vector& A, const double& p) { return Vector(A.x/p, A.y/p); }
friend bool operator == (const Point& A, const Point& B) { return dcmp(A.x-B.x) == && dcmp(A.y-B.y) == ; }
friend bool operator < (const Point& A, const Point& B) { return A.x < B.x || (A.x == B.x && A.y < B.y); } void in(void) { scanf("%lf%lf", &x, &y); }
void out(void) { printf("%lf %lf", x, y); }
}; template <class T> T sqr(T x) { return x * x;}
double Dot(const Vector& A, const Vector& B) { return A.x*B.x + A.y*B.y; } //点积
double Length(const Vector& A){ return sqrt(Dot(A, A)); }
double Angle(const Vector& A, const Vector& B) { return acos(Dot(A, B)/Length(A)/Length(B)); } //向量夹角
double Cross(const Vector& A, const Vector& B) { return A.x*B.y - A.y*B.x; } //叉积
double Area(const Point& A, const Point& B, const Point& C) { return fabs(Cross(B-A, C-A)); }
Vector normal(Vector x) { return Point(-x.y, x.x) / Length(x);}
double angle(Vector x) { return atan2(x.y, x.x);} Vector vecunit(Vector x){ return x / Length(x);} //单位向量
struct Circle {
Point c; //圆心
double r; //半径 Circle() { }
Circle(const Circle& rhs): c(rhs.c), r(rhs.r) { }
Circle(const Point& c, const double& r): c(c), r(r) { } Point point(double ang) const { return Point(c.x + cos(ang)*r, c.y + sin(ang)*r); } //圆心角所对应的点
double area(void) const { return PI * r * r; }
};
struct Line {
Point P; //直线上一点
Vector dir; //方向向量(半平面交中该向量左侧表示相应的半平面)
double ang; //极角,即从x正半轴旋转到向量dir所需要的角(弧度) Line() { } //构造函数
Line(const Line& L): P(L.P), dir(L.dir), ang(L.ang) { }
Line(const Point& P, const Vector& dir): P(P), dir(dir) { ang = atan2(dir.y, dir.x); } bool operator < (const Line& L) const { //极角排序
return ang < L.ang;
} Point point(double t) { return P + dir*t; }
}; bool InCircle(Point x, Circle c) { return dcmp(c.r*c.r - Length(c.c - x)*Length(c.c - x)) >= ;}
Point GetIntersection(Line a, Line b) //线段交点
{
Vector u = a.P-b.P;
double t = Cross(b.dir, u) / Cross(a.dir, b.dir);
return a.P + a.dir*t;
} bool OnSegment(Point p, Point a1, Point a2)
{
return dcmp(Cross(a1-p, a2-p)) == && dcmp(Dot(a1-p, a2-p)) < ;
}
int getSegCircleIntersection(Line L, Circle C, Point* sol)
{
Vector nor = normal(L.dir);
Line pl = Line(C.c, nor);
Point ip = GetIntersection(pl, L);
double dis = Length(ip - C.c);
if (dcmp(dis - C.r) > ) return ;
Point dxy = vecunit(L.dir) * sqrt(C.r*C.r - dis*dis);
int ret = ;
sol[ret] = ip + dxy;
if (OnSegment(sol[ret], L.P, L.point())) ret++;
sol[ret] = ip - dxy;
if (OnSegment(sol[ret], L.P, L.point())) ret++;
return ret;
} double SegCircleArea(Circle C, Point a, Point b) //线段切割圆
{
double a1 = angle(a - C.c);
double a2 = angle(b - C.c);
double da = fabs(a1 - a2);
if (da > PI) da = PI * 2.0 - da;
return dcmp(Cross(b - C.c, a - C.c)) * da * sqr(C.r) / 2.0;
} double PolyCiclrArea(Circle C, Point *p, int n)//多边形与圆相交面积
{
double ret = 0.0;
Point sol[];
p[n] = p[];
for(int i=;i<n;i++)
{
double t1, t2;
int cnt = getSegCircleIntersection(Line(p[i], p[i+]-p[i]), C, sol);
if (cnt == )
{
if (!InCircle(p[i], C) || !InCircle(p[i+], C)) ret += SegCircleArea(C, p[i], p[i+]);
else ret += Cross(p[i+] - C.c, p[i] - C.c) / 2.0;
}
if (cnt == )
{
if (InCircle(p[i], C) && !InCircle(p[i+], C)) ret += Cross(sol[] - C.c, p[i] - C.c) / 2.0, ret += SegCircleArea(C, sol[], p[i+]);
else ret += SegCircleArea(C, p[i], sol[]), ret += Cross(p[i+] - C.c, sol[] - C.c) / 2.0;
}
if (cnt == )
{
if ((p[i] < p[i + ]) ^ (sol[] < sol[])) swap(sol[], sol[]);
ret += SegCircleArea(C, p[i], sol[]);
ret += Cross(sol[] - C.c, sol[] - C.c) / 2.0;
ret += SegCircleArea(C, sol[], p[i+]);
}
}
return fabs(ret);
}
double PolygonArea(Point *po, int n) {
double area = 0.0;
for(int i = ; i < n-; i++) {
area += Cross(po[i]-po[], po[i+]-po[]);
}
return area * 0.5;
}
Point a[], b;
double p, q;
int main(){
int n, m;
scanf("%d", &n);
for(int i=;i<n;i++) a[i].in();
double ar = fabs(PolygonArea(a, n));
scanf("%d", &m);
for(int i=;i<m;i++){
b.in();
scanf("%lf%lf", &p, &q);
double l = , r = , num = , mid, aa = -p/q;
while(num--){
mid = (l+r)/;
Circle yuan(b, mid);
if(PolyCiclrArea(yuan, a, n)/ar < aa) l = mid;
else r = mid;
}
printf("%.10f\n", mid);
}
return ;
}

牛客网暑期ACM多校训练营(第三场)J 多边形与圆相交的面积的更多相关文章

  1. 牛客网暑期ACM多校训练营(第二场)J farm (二维树状数组)

    题目链接: https://www.nowcoder.com/acm/contest/140/J 思路: 都写在代码注释里了,非常好懂.. for_each函数可以去看一下,遍历起vector数组比较 ...

  2. 牛客网 暑期ACM多校训练营(第二场)A.run-动态规划 or 递推?

    牛客网暑期ACM多校训练营(第二场) 水博客. A.run 题意就是一个人一秒可以走1步或者跑K步,不能连续跑2秒,他从0开始移动,移动到[L,R]的某一点就可以结束.问一共有多少种移动的方式. 个人 ...

  3. 牛客网 暑期ACM多校训练营(第一场)A.Monotonic Matrix-矩阵转化为格子路径的非降路径计数,Lindström-Gessel-Viennot引理-组合数学

    牛客网暑期ACM多校训练营(第一场) A.Monotonic Matrix 这个题就是给你一个n*m的矩阵,往里面填{0,1,2}这三种数,要求是Ai,j⩽Ai+1,j,Ai,j⩽Ai,j+1 ,问你 ...

  4. 2018牛客网暑期ACM多校训练营(第二场)I- car ( 思维)

    2018牛客网暑期ACM多校训练营(第二场)I- car 链接:https://ac.nowcoder.com/acm/contest/140/I来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 ...

  5. 牛客网暑期ACM多校训练营(第一场) - J Different Integers(线段数组or莫队)

    链接:https://www.nowcoder.com/acm/contest/139/J来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语言1048 ...

  6. 牛客网暑期ACM多校训练营(第九场) A题 FWT

    链接:https://www.nowcoder.com/acm/contest/147/A来源:牛客网 Niuniu has recently learned how to use Gaussian ...

  7. 牛客网暑期ACM多校训练营(第九场)D

    链接:https://www.nowcoder.com/acm/contest/147/D来源:牛客网 Niuniu likes traveling. Now he will travel on a ...

  8. 牛客网暑期ACM多校训练营(第二场)B discount

    链接:https://www.nowcoder.com/acm/contest/140/B来源:牛客网 题目描述 White Rabbit wants to buy some drinks from ...

  9. 2018牛客网暑期ACM多校训练营(第一场)D图同构,J

    链接:https://www.nowcoder.com/acm/contest/139/D来源:牛客网 同构图:假设G=(V,E)和G1=(V1,E1)是两个图,如果存在一个双射m:V→V1,使得对所 ...

  10. 牛客网暑期ACM多校训练营(第二场) I Car 思维

    链接:https://www.nowcoder.com/acm/contest/140/I来源:牛客网 White Cloud has a square of n*n from (1,1) to (n ...

随机推荐

  1. Keil简介

    最早接触Keil是学习开发8051系列的单片机.Keil C51是Keil公司出品的51系列兼容单片机C语言软件开发系统,与汇编相比,C语言在功能上.结构性.可读性.可维护性上有明显的优势,因而易学易 ...

  2. qt qtableview 样式设置

    转载请注明出处:http://www.cnblogs.com/dachen408/p/7531159.html 1.设置tableview的列宽时,必须先setModel再setColumnWidge ...

  3. codevs 2905 足球晋级

    时间限制: 1 s  空间限制: 64000 KB  题目等级 : 黄金 Gold   题目描述 Description A市举行了一场足球比赛 一共有4n支队伍参加,分成n个小组(每小组4支队伍)进 ...

  4. systemtap执行过程中报probe timer.profile registration error

    probe timer.profile registration error 今天在执行火焰图的过程中,代码报错,probe timer.profile registration error 经过查询 ...

  5. es 集群部署

    下载 [root@localhost ~]# wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.5.1 ...

  6. 关于sigleton模式

    单例模式的要点有三个:一是某个类只能有一个实例:二是它必须自行创建这个实例:三是它必须自行向整个系统提供这个实例. 从具体实现角度来说,就是以下三点:一是单例模式的类只提供私有的构造函数,二是类定义中 ...

  7. Hibernate5.x版本HQL限定查询 Legacy-style query parameters (`?`) are no longer supported

    在此版本的限定查询和4.0版本的限定查询: 如果查询语句是: String hql = "select u from User u where u.gender = ?"; 会出现 ...

  8. python json.loads json.dumps的区别

    json.loads() 是将字符串传化为字典 json.dumps () 是将字典转化为字符串 >>> dict = "{8:'bye', 'you':'coder'}& ...

  9. Java垃圾回收之新生代垃圾收集器

    问题:什么是Stop-the-World? 1.JVM由于要执行GC而停止了应用程序的执行 2.任何一种GC算法中都会发生 3.多数GC优化通过减少Stop-the-world发生的时间来提高程序的性 ...

  10. 2018 CCPC 女生赛 hdoj6287 口算训练

    题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=6287 Summarize: 1.分解质因数: 2.二分查找函数lower_bound与upper_bo ...