【Spark】DAGScheduler源代码浅析
DAGScheduler
DAGScheduler的主要任务是基于Stage构建DAG,决定每个任务的最佳位置
- 记录哪个RDD或者Stage输出被物化
- 面向stage的调度层。为job生成以stage组成的DAG。提交TaskSet给TaskScheduler运行
- 又一次提交shuffle输出丢失的stage
每个Stage内。都是独立的tasks,他们共同运行同一个computefunction,享有同样的shuffledependencies。DAG在切分stage的时候是按照出现shuffle为界限的。
DAGScheduler实例化
以下的代码是SparkContext实例化DAGScheduler的过程:
@volatile private[spark] var dagScheduler: DAGScheduler = _
try {
dagScheduler = new DAGScheduler(this)
} catch {
case e: Exception => {
try {
stop()
} finally {
throw new SparkException("Error while constructing DAGScheduler", e)
}
}
}
以下代码显示了DAGScheduler的构造函数定义中,通过绑定TaskScheduler的方式创建,当中次构造函数去调用主构造函数来将sc的字段填充入參:
private[spark]
class DAGScheduler(
private[scheduler] val sc: SparkContext,
private[scheduler] val taskScheduler: TaskScheduler,
listenerBus: LiveListenerBus,
mapOutputTracker: MapOutputTrackerMaster,
blockManagerMaster: BlockManagerMaster,
env: SparkEnv,
clock: Clock = new SystemClock())
extends Logging {
def this(sc: SparkContext, taskScheduler: TaskScheduler) = {
this(
sc,
taskScheduler,
sc.listenerBus,
sc.env.mapOutputTracker.asInstanceOf[MapOutputTrackerMaster],
sc.env.blockManager.master,
sc.env)
}
def this(sc: SparkContext) = this(sc, sc.taskScheduler)
作业提交与DAGScheduler操作
Action的大部分操作会进行作业(job)的提交,源代码1.0版的job提交过程的大致调用链是:sc.runJob()
–>dagScheduler.runJob
–>dagScheduler.submitJob
—>dagSchedulerEventProcessActor.JobSubmitted
–>dagScheduler.handleJobSubmitted
–>dagScheduler.submitStage
–>dagScheduler.submitMissingTasks
–>taskScheduler.submitTasks
。
详细的作业提交运行期的函数调用为:
- sc.runJob->dagScheduler.runJob->submitJob
- DAGScheduler::submitJob会创建JobSummitted的event发送给内嵌类eventProcessActor(在源代码1.4中,submitJob函数中,使用DAGSchedulerEventProcessLoop类进行事件的处理)
- eventProcessActor在接收到JobSubmmitted之后调用processEvent处理函数
- job到stage的转换,生成finalStage并提交运行。关键是调用submitStage
- 在submitStage中会计算stage之间的依赖关系,依赖关系分为宽依赖和窄依赖两种
- 假设计算中发现当前的stage没有不论什么依赖或者全部的依赖都已经准备完毕,则提交task
- 提交task是调用函数submitMissingTasks来完毕
- task真正运行在哪个worker上面是由TaskScheduler来管理,也就是上面的submitMissingTasks会调用TaskScheduler::submitTasks
- TaskSchedulerImpl中会依据Spark的当前运行模式来创建对应的backend,假设是在单机运行则创建LocalBackend
- LocalBackend收到TaskSchedulerImpl传递进来的ReceiveOffers事件
- receiveOffers->executor.launchTask->TaskRunner.run
DAGScheduler的runJob函数
DAGScheduler.runjob最后把结果通过resultHandler保存返回。
这里DAGScheduler的runJob函数调用DAGScheduler的submitJob函数来提交任务:
def runJob[T, U: ClassTag](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
callSite: CallSite,
allowLocal: Boolean,
resultHandler: (Int, U) => Unit,
properties: Properties): Unit = {
val start = System.nanoTime
val waiter = submitJob(rdd, func, partitions, callSite, allowLocal, resultHandler, properties)
waiter.awaitResult() match {
case JobSucceeded => {
logInfo("Job %d finished: %s, took %f s".format
(waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
}
case JobFailed(exception: Exception) =>
logInfo("Job %d failed: %s, took %f s".format
(waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
throw exception
}
}
作业提交的调度
在Spark源代码1.4.0中,DAGScheduler的submitJob函数不再使用DAGEventProcessActor进行事件处理和消息通信,而是使用DAGSchedulerEventProcessLoop类实例eventProcessLoop进行JobSubmitted事件的post动作。
以下是submitJob函数代码:
/**
* Submit a job to the job scheduler and get a JobWaiter object back. The JobWaiter object
* can be used to block until the the job finishes executing or can be used to cancel the job.
*/
def submitJob[T, U](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
callSite: CallSite,
allowLocal: Boolean,
resultHandler: (Int, U) => Unit,
properties: Properties): JobWaiter[U] = {
// Check to make sure we are not launching a task on a partition that does not exist.
val maxPartitions = rdd.partitions.length
partitions.find(p => p >= maxPartitions || p < 0).foreach { p =>
throw new IllegalArgumentException(
"Attempting to access a non-existent partition: " + p + ". " +
"Total number of partitions: " + maxPartitions)
}
val jobId = nextJobId.getAndIncrement()
if (partitions.size == 0) {
return new JobWaiter[U](this, jobId, 0, resultHandler)
}
assert(partitions.size > 0)
val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
eventProcessLoop.post(JobSubmitted(
jobId, rdd, func2, partitions.toArray, allowLocal, callSite, waiter, properties))
waiter
}
当eventProcessLoop对象投递了JobSubmitted事件之后,对象内的eventThread线程实例对事件进行处理。不断从事件队列中取出事件,调用onReceive函数处理事件。当匹配到JobSubmitted事件后。调用DAGScheduler的handleJobSubmitted函数并传入jobid、rdd等參数来处理Job。
handleJobSubmitted函数
Job处理过程中handleJobSubmitted比較关键,该函数主要负责RDD的依赖性分析。生成finalStage,并依据finalStage来产生ActiveJob。
在handleJobSubmitted函数源代码中。给出了部分凝视:
private[scheduler] def handleJobSubmitted(jobId: Int,
finalRDD: RDD[_],
func: (TaskContext, Iterator[_]) => _,
partitions: Array[Int],
allowLocal: Boolean,
callSite: CallSite,
listener: JobListener,
properties: Properties) {
var finalStage: Stage = null
try {
// New stage creation may throw an exception if, for example, jobs are run on a
// HadoopRDD whose underlying HDFS files have been deleted.
finalStage = newStage(finalRDD, partitions.size, None, jobId, callSite)
} catch {
//错误处理,告诉监听器作业失败。返回....
case e: Exception =>
logWarning("Creating new stage failed due to exception - job: " + jobId, e)
listener.jobFailed(e)
return
}
if (finalStage != null) {
val job = new ActiveJob(jobId, finalStage, func, partitions, callSite, listener, properties)
clearCacheLocs()
logInfo("Got job %s (%s) with %d output partitions (allowLocal=%s)".format(
job.jobId, callSite.shortForm, partitions.length, allowLocal))
logInfo("Final stage: " + finalStage + "(" + finalStage.name + ")")
logInfo("Parents of final stage: " + finalStage.parents)
logInfo("Missing parents: " + getMissingParentStages(finalStage))
val shouldRunLocally =
localExecutionEnabled && allowLocal && finalStage.parents.isEmpty && partitions.length == 1
val jobSubmissionTime = clock.getTimeMillis()
if (shouldRunLocally) {
// 非常短、没有父stage的本地操作,比方 first() or take() 的操作本地运行
// Compute very short actions like first() or take() with no parent stages locally.
listenerBus.post(
SparkListenerJobStart(job.jobId, jobSubmissionTime, Seq.empty, properties))
runLocally(job)
} else {
// collect等操作走的是这个过程。更新相关的关系映射,用监听器监听,然后提交作业
jobIdToActiveJob(jobId) = job
activeJobs += job
finalStage.resultOfJob = Some(job)
val stageIds = jobIdToStageIds(jobId).toArray
val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
listenerBus.post(
SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
// 提交stage
submitStage(finalStage)
}
}
// 提交stage
submitWaitingStages()
}
小结
该篇文章介绍了DAGScheduler从SparkContext中进行实例化,到运行Action操作时提交任务调用runJob函数,进而介绍了提交任务的消息调度,和处理Job函数handleJobSubmitted函数。
因为在handleJobSubmitted函数中涉及到依赖性分析和stage的源代码内容,于是我计划在下一篇文章里进行介绍和源代码分析。
转载请注明作者Jason Ding及其出处
GitCafe博客主页(http://jasonding1354.gitcafe.io/)
Github博客主页(http://jasonding1354.github.io/)
CSDN博客(http://blog.csdn.net/jasonding1354)
简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)
Google搜索jasonding1354进入我的博客主页
【Spark】DAGScheduler源代码浅析的更多相关文章
- 【Spark】Stage生成和Stage源代码浅析
引入 上一篇文章<DAGScheduler源代码浅析>中,介绍了handleJobSubmitted函数,它作为生成finalStage的重要函数存在.这一篇文章中,我将就DAGSched ...
- 【Spark Core】任务运行机制和Task源代码浅析1
引言 上一小节<TaskScheduler源代码与任务提交原理浅析2>介绍了Driver側将Stage进行划分.依据Executor闲置情况分发任务,终于通过DriverActor向exe ...
- Spark SQL 源代码分析之 In-Memory Columnar Storage 之 in-memory query
/** Spark SQL源代码分析系列文章*/ 前面讲到了Spark SQL In-Memory Columnar Storage的存储结构是基于列存储的. 那么基于以上存储结构,我们查询cache ...
- Spark SQL 源代码分析系列
从决定写Spark SQL文章的源代码分析,到现在一个月的时间,一个又一个几乎相同的结束很快,在这里也做了一个综合指数,方便阅读,下面是读取顺序 :) 第一章 Spark SQL源代码分析之核心流程 ...
- Spark SQL源代码分析之核心流程
/** Spark SQL源代码分析系列文章*/ 自从去年Spark Submit 2013 Michael Armbrust分享了他的Catalyst,到至今1年多了,Spark SQL的贡献者从几 ...
- Gradle 庖丁解牛(构建生命周期核心托付对象创建源代码浅析)
[工匠若水 http://blog.csdn.net/yanbober 未经同意严禁转载,请尊重作者劳动成果.私信联系我] 1 背景 上一篇<Gradle 庖丁解牛(构建源头源代码浅析)> ...
- Spark SQL 源代码分析之Physical Plan 到 RDD的详细实现
/** Spark SQL源代码分析系列文章*/ 接上一篇文章Spark SQL Catalyst源代码分析之Physical Plan.本文将介绍Physical Plan的toRDD的详细实现细节 ...
- Spark Core源代码分析: Spark任务运行模型
DAGScheduler 面向stage的调度层,为job生成以stage组成的DAG,提交TaskSet给TaskScheduler运行. 每个Stage内,都是独立的tasks,他们共同运行同一个 ...
- Android网络通信Volley框架源代码浅析(三)
尊重原创 http://write.blog.csdn.net/postedit/26002961 通过前面浅析(一)和浅析(二)的分析.相信大家对于Volley有了初步的认识,可是假设想更深入的理解 ...
随机推荐
- Introduction of Version Control/Git, SVN
什么是版本控制? 你可以把一个版本控制系统(缩写VCS)理解为一个“数据库”,在需要的时候,它可以帮你完整地保存一个项目的快照.当你需要查看一个之前的快照(称之为“版本”)时,版本控制系统可以显示出当 ...
- 15 AJAX
AJAX AJAX 简介 AJAX 是 异步 JavaScript 及 XML(Asynchronous JavaScript and XML)的缩写.AJAX 不是一种新的编程语言,而是一种用于创 ...
- 10Oracle Database 数据表数据查询
Oracle Database 数据表数据查询 DML 数据操纵语言 - 数据的查看和维护 select / insert /delete /update 基本查询语句 Select [distinc ...
- oracle文件 结构01
1.减少数据的冗余(例如使用id) 2.保证数据库一致性 关联表越多越慢 主机名 hosts 文件 ntp 时间同步
- JAVA基础——异常--解析
简介 异常处理是java语言的重要特性之一,<Three Rules for effective Exception Handling>一文中是这么解释的:它主要帮助我们在debug的 ...
- 【反向并查集、联通图】P1197 [JSOI2008]星球大战
题目描述 很久以前,在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治着整个星系. 某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器,并攻下了星系中几乎所有的星球.这些星球通过特殊的以太隧 ...
- Luogu P4016 「 网络流 24 题 」负载平衡问题
吐槽题目难度,这个题建模好像比前两个都要难,但是难度评级却比第二个要低. 解题思路 依旧是考虑如何建模和建立源点汇点.每个点的货物数量到最后都一样的话肯定是等于他们的平均值.用 $num$ 数组存储原 ...
- 为什么map对象不能使用stl中的sort函数
STL所提供的各式各样算法中,sort()是最复杂最庞大的一个.这个算法接受两个RandomAccestlerators(随机存取迭代器),然后将区间内的所有元素以渐增方式由小到大重新排列.第二个版本 ...
- 洛谷 P1280 尼克的任务 (线性DP)
题意概括 线性资源分配的问题,因为空闲的时间大小看后面的时间(反正感觉这个就是个套路)所以从后往前DP. 转移方程 如果当前时刻没有工作 f[i]=f[i+1]+1 如果当前时刻有工作 f[i]=ma ...
- pxc增量备份
###增备数据库,如果后续还需要再次增备,则可以再次指定--extra-lsndir,如果与上次备份指定相同的位置,该文件被覆盖# innobackupex --compress --incremen ...