Longest Increasing Subsequence HDU - 6284
/*
首先预处理好f g数组
fi :以a[i]为结尾的 最长上升子序列的长度
gi :以a[i]为开始的 最长上升子序列的长度
mxx : 最长上升子序列的长度
线段树优化 nlogn
(不包含a[i]==0) 显然把所有0换成x 只可能是mxx变成mxx+1 然后我们考虑一对 i j (下标)
若 f[i]+g[j]==mxx 则 所有a[i]+1~~~a[j]-1之间的x
他们对用的lis长度为mxx+1
然后枚举i j凉了
对于一个i 我们只需要找到 他后面的 一个j 满足 f[i]+g[j]==mxx 并且a[j]最大
然后维护bg[i] 表示长度为g[j]==i的所有的 a[j]中最大的
从后往前枚举i 然后维护 bg O(1)转移
上述过程可能 i和bg维护的j之间 他没有0 那就不能转移
所以 按0分段 遇到0 就把之前的信息更新bg 然后没了 */
#include<cstdio>
#include<iostream>
#include<cstdlib>
#define lc k*2
#define rc k*2+1
#define mid (l+r)/2
#define maxn 400010
#define ll long long
using namespace std;
ll n,a[maxn],f[maxn],s[maxn],g[maxn],as[maxn],bg[maxn],c[maxn][];
void Insert(ll k,ll l,ll r,ll x,ll y){
if(x==l&&r==x){
s[k]=max(s[k],y);return;
}
if(x<=mid)Insert(lc,l,mid,x,y);
else Insert(rc,mid+,r,x,y);
s[k]=max(s[lc],s[rc]);
}
ll Query(ll k,ll l,ll r,ll x,ll y){
if(x>y)return ;
if(x<=l&&y>=r)return s[k];
ll res=;
if(x<=mid)res=max(res,Query(lc,l,mid,x,y));
if(y>mid)res=max(res,Query(rc,mid+,r,x,y));
return res;
}
int main(){
while(~scanf("%lld",&n)){
for(ll i=;i<=n*;i++)
s[i]=f[i]=g[i]=as[i]=;
for(ll i=;i<=n;i++){
scanf("%lld",&a[i]);
//a[i]=rand();
f[i]=;g[i]=;
}
ll mxx=;
for(ll i=;i<=n;i++){
if(a[i]==)continue;
ll mx=Query(,,n,,a[i]-);
f[i]=mx+;mxx=max(mxx,f[i]);
Insert(,,n,a[i],f[i]);
}
for(ll i=;i<=n*;i++)s[i]=;
for(ll i=n;i>=;i--){
if(a[i]==)continue;
ll mx=Query(,,n,a[i]+,n);
g[i]=mx+;Insert(,,n,a[i],g[i]);
}
for(ll i=;i<=n*;i++)bg[i]=;
ll cnt=;a[]=-;
for(ll i=n;i>=;i--){
if(a[i]==){
for(ll j=;j<=cnt;j++)
bg[c[j][]]=max(bg[c[j][]],c[j][]);
cnt=;bg[]=n+;
}
else{
ll mx=bg[mxx-f[i]];
c[++cnt][]=g[i];c[cnt][]=a[i];
if(mx-<a[i]+)continue;
as[a[i]+]++;as[mx]--;
}
}
ll ans=;
for(ll i=;i<=n;i++)as[i]+=as[i-];
for(ll i=;i<=n;i++){
if(as[i]>)ans+=i*(mxx+);
else ans+=i*mxx;
//("%lld\n",ans);
}
printf("%lld\n",ans);
}
return ;
}
Longest Increasing Subsequence HDU - 6284的更多相关文章
- 最长上升子序列 LIS(Longest Increasing Subsequence)
引出: 问题描述:给出一个序列a1,a2,a3,a4,a5,a6,a7….an,求它的一个子序列(设为s1,s2,…sn),使得这个子序列满足这样的性质,s1<s2<s3<…< ...
- [LeetCode] Longest Increasing Subsequence 最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- [tem]Longest Increasing Subsequence(LIS)
Longest Increasing Subsequence(LIS) 一个美丽的名字 非常经典的线性结构dp [朴素]:O(n^2) d(i)=max{0,d(j) :j<i&& ...
- [LintCode] Longest Increasing Subsequence 最长递增子序列
Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...
- Leetcode 300 Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- [LeetCode] Longest Increasing Subsequence
Longest Increasing Subsequence Given an unsorted array of integers, find the length of longest incre ...
- The Longest Increasing Subsequence (LIS)
传送门 The task is to find the length of the longest subsequence in a given array of integers such that ...
- 300. Longest Increasing Subsequence
题目: Given an unsorted array of integers, find the length of longest increasing subsequence. For exam ...
- SPOJ LIS2 Another Longest Increasing Subsequence Problem 三维偏序最长链 CDQ分治
Another Longest Increasing Subsequence Problem Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://a ...
随机推荐
- nz-card头部右侧添加东西
<nz-card [nzBordered]="true" nzTitle="卡片标题" [nzExtra]="extraTemplate1&qu ...
- gearman的安装与使用
Gearman是一个分发任务的程序框架,它会对作业进行排队自动分配到一系列机器上.gearman跨语言跨平台,很方便的实现异步后台任务.php官方收录:http://php.net/manual/zh ...
- Getting start with dbus in systemd (03) - sd-bus.h 使用例子 (systemd version>=221)
sd-bus.h 例子 注意: sd-dbus 是systemd提供的lib,但是这个lib,只有在systemd>v221版本后才可以使用,centos 219版本太低,所以不能使用. 参考: ...
- Java排序算法全
目录 Java排序算法代码 零. 排序基类 一. 选择排序 二. 插入排序 三. 希尔排序 四. 归并排序 1. 自顶向下 2. 自底向上 五. 快速排序 1. 基本版 2. 双路切分版 3. 三路切 ...
- Xcode5编译ffmpeg
命令行安装FFmpeg:git clone git://source.ffmpeg.org/ffmpeg.git ffmpeg(或:到https://github.com/gabriel/ffmpeg ...
- HTML元素以及HTML元素的分类
HTML元素以及HTML元素的分类 html标签又叫做html元素,它分为块级元素和内联元素(也可以叫做行内元素),都是html规范中的概念 块级元素 含义:块级元素是指本身属性为display:bl ...
- MyBatis 的基本要素—SQL 映射文件
MyBatis 真正的强大在于映射语句,相对于它强大的功能,SQL 映射文件的配置却是相当简单.对比 SQL 映射配置和 JDBC 代码,发现使用 SQL 映射文件配置可减少 50% 以上的代码,并且 ...
- config对象的使用及常用方法
config对象的使用及常用方法 制作人:全心全意 config对象主要用于取得服务器的配置信息.通过pageContext对象的getServletConfig()方法可以获取一个config对象. ...
- Python selenium chrome打包exe后禁用控制台输出滚动日志
Python selenium chrome打包exe后,在运行的过程中,如果遇到需要input()输入时,会发现被不断滚动刷新的日志把命令行输入快速顶掉了,通过查阅资料不断实践,发现以下方法有效: ...
- 程序员节QWQ
据$lc$说,今天是程序员节QWQ 过节啦QWQ