没有复杂结构甚至不长但是写起来就很想死的代码类型

原理非常简单,就是用先用单调队列处理出mn1[i][j]表示i行的j到j+k-1列的最小值,mx1[i][j]表示i行的j到j+k-1列的最大值

然后就变成求单列最大最小值,用上面同样的方法处理出对于列的mn2mx2即可

#include<iostream>
#include<cstdio>
using namespace std;
const int N=1005;
int n,m,k,a[N][N],mn1[N][N],mx1[N][N],mn2[N][N],mx2[N][N],ans=1e9,q1[N],l1,r1,q2[N],l2,r2;
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int main()
{
n=read(),m=read(),k=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
a[i][j]=read();
for(int i=1;i<=n;i++)
{
l2=r2=l1=r1=q2[1]=q1[1]=1;
for(int j=2;j<=m;j++)
{
while(a[i][j]>=a[i][q2[r2]]&&l2<=r2)
r2--;
while(a[i][j]<=a[i][q1[r1]]&&l1<=r1)
r1--;
q2[++r2]=j;q1[++r1]=j;
while(j-q2[l2]>=k)
l2++;
while(j-q1[l1]>=k)
l1++;
if(j>=k)
mx1[i][j-k+1]=a[i][q2[l2]],mn1[i][j-k+1]=a[i][q1[l1]];
}
}
for (int j=1;j<=m-k+1;j++)
{
l2=r2=l1=r1=q2[1]=q1[1]=1;
for(int i=2;i<=n;i++)
{
while(mx1[i][j]>=mx1[q2[r2]][j]&&l2<=r2)
r2--;
while(mn1[i][j]<=mn1[q1[r1]][j]&&l1<=r1)
r1--;
q2[++r2]=i;q1[++r1]=i;
while(i-q2[l2]>=k)
l2++;
while(i-q1[l1]>=k)
l1++;
if(i>=k)
mx2[i-k+1][j]=mx1[q2[l2]][j],mn2[i-k+1][j]=mn1[q1[l1]][j];
}
}
for(int i=1;i<=n-k+1;i++)
for(int j=1;j<=m-k+1;j++)
ans=min(ans,mx2[i][j]-mn2[i][j]);
printf("%d\n",ans);
return 0;
}

bzoj 1047: [HAOI2007]理想的正方形【单调队列】的更多相关文章

  1. bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp

    题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2369  Solved: 1266[Submi ...

  2. BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )

    单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...

  3. BZOJ 1047: [HAOI2007]理想的正方形 单调队列瞎搞

    题意很简明吧? 枚举的矩形下边界和右端点即右下角,来确定矩形位置: 每一个纵列开一个单调队列,记录从 i-n+1 行到 i 行每列的最大值和最小值,矩形下边界向下推移的时候维护一下: 然后在记录的每一 ...

  4. BZOJ1047: [HAOI2007]理想的正方形 [单调队列]

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2857  Solved: 1560[Submit][St ...

  5. P2216 [HAOI2007]理想的正方形 (单调队列)

    题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...

  6. [BZOJ 1047] [HAOI2007] 理想的正方形 【单调队列】

    题目链接:BZOJ - 1047 题目分析 使用单调队列在 O(n^2) 的时间内求出每个 n * n 正方形的最大值,最小值.然后就可以直接统计答案了. 横向有 a 个单调队列(代码中是 Q[1] ...

  7. BZOJ 1047: [HAOI2007]理想的正方形

    题目 单调队列是个很神奇的东西,我以前在博客写过(吧) 我很佩服rank里那些排前几的大神,700ms做了时限10s的题,简直不能忍.(但是我还是不会写 我大概一年半没写单调队列,也有可能根本没有写过 ...

  8. Luogu 2216[HAOI2007]理想的正方形 - 单调队列

    Solution 二维单调队列, 这个数组套起来看得我眼瞎... Code #include<cstdio> #include<algorithm> #include<c ...

  9. [HAOI2007] 理想的正方形 (单调队列)

    题目链接 Solution MD,经过这道题,算是掌握单调队列了... 可以先预处理出点 \((i,j)\) 往上 \(n\) 的最大值和最小值. 然后再横着做一遍单调队列即可. Code #incl ...

随机推荐

  1. Apollo源码解析看一文就够

    对于配置中心我们先抛出问号三连,什么是配置中心?为什么要用配置中心?配置中心怎么用? 笔者说说自己理解的配置中心,个人观点的十六字 消息存储 消息推送 环境隔离 灰度发布 今天我们先来看Apollo配 ...

  2. 添物不花钱学JavaEE(基础篇)- Servlet

    Servlet是Java Web开发必须要掌握的. Servlet是什么? A servlet is a Java technology based web component, managed by ...

  3. TeamViewer & remote control

    TeamViewer remote control https://www.teamviewer.com/en/download/windows/ https://dl.tvcdn.de/downlo ...

  4. Django组件:(6)cookie 和 session

    会话:会话可理解为客户端与服务器之间的一次会晤,在一次会晤中可能会包含多次请求和响应:在JavaWeb中,客户向某一服务器发出第一个请求开始,会话就开始了,直到客户关闭了浏览器会话结束. 在一个会话的 ...

  5. 【BZOJ4872】分手是祝愿(期望DP)

    题意: B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态,下标为 从 1 到 n 的正整数.每个灯有两个状态亮和灭,我们用 1 来表示这个灯是亮的,用 0 表示这 ...

  6. 一练Splay之维修数列第一次

    平衡树并不是之前没写过,觉得有必要把平衡树变成考场上能敲的东西,也就是说,考一道诸如“维修数列”这样的送分题,要能拿满分. 维修数列.给定一个数列支持以下操作: 输入的第1 行包含两个数N 和M(M ...

  7. Linux下汇编语言学习笔记30 ---

    这是17年暑假学习Linux汇编语言的笔记记录,参考书目为清华大学出版社 Jeff Duntemann著 梁晓辉译<汇编语言基于Linux环境>的书,喜欢看原版书的同学可以看<Ass ...

  8. Google Protocol Buffer 的使用(二)

    一.protobuf应用场景 protobuf 在Java中的应用场景可以是序列化和反序列化,流可以通过文件或者通过网络TCP/UDP等方式传输.新建一个.proto文件 syntax = " ...

  9. jackson的应用

    直接上代码 package com.demo.jackson.utils; import com.fasterxml.jackson.core.JsonProcessingException; imp ...

  10. C++之类的比較运算符的重载

    比較运算符的重载通常有两种方式: 第一:作为成员函数重载 曾经几章的Student类为例: <span style="font-family:Microsoft YaHei;font- ...