1036 商务旅行

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 钻石 Diamond
 查看运行结果
 
 
题目描述 Description

某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间。

假设有N个城镇,首都编号为1,商人从首都出发,其他各城镇之间都有道路连接,任意两个城镇之间如果有直连道路,在他们之间行驶需要花费单位时间。该国公路网络发达,从首都出发能到达任意一个城镇,并且公路网络不会存在环。

你的任务是帮助该商人计算一下他的最短旅行时间。

输入描述 Input Description

输入文件中的第一行有一个整数N,1<=n<=30 000,为城镇的数目。下面N-1行,每行由两个整数a 和b (1<=ab<=n; a<>b)组成,表示城镇a和城镇b有公路连接。在第N+1行为一个整数M,下面的M行,每行有该商人需要顺次经过的各城镇编号。

输出描述 Output Description

在输出文件中输出该商人旅行的最短时间。

样例输入 Sample Input
5
1 2
1 5
3 5
4 5
4
1
3
2
5
样例输出 Sample Output

7

lca裸题

最短距离为每两个相邻的点到lca的距离。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 300000
using namespace std;
bool vis[N];
int n,m,x,y,tot,lca,ans;
int a[N],fa[N],deep[N],size[N],top[N],head[N];
int read()
{
    ,f=; char ch=getchar();
    ; ch=getchar();}
    +ch-'; ch=getchar();}
    return x*f;
}
struct Edge
{
    int from,to,next;
}edge[N];
int add(int x,int y)
{
    tot++;
    edge[tot].to=y;
    edge[tot].next=head[x];
    head[x]=tot;
}
int dfs(int x)
{
    size[x]=;vis[x]=true;
    deep[x]=deep[fa[x]]+;
    for(int i=head[x];i;i=edge[i].next)
    {
        int to=edge[i].to;
        if(fa[x]!=to&&!vis[to])
        {
            fa[to]=x;
            dfs(to);
            size[x]+=size[to];
        }
    }
}
int dfs1(int x)
{
    ; vis[x]=true;
    if(!top[x]) top[x]=x;
    for(int i=head[x];i;i=edge[i].next)
    {
        int to=edge[i].to;
        if(fa[x]!=to&&size[to]>size[t]) t=to;
    }
    if(t&&!vis[t])
    {
        top[t]=top[x];
        dfs1(t);
    }
    for(int i=head[x];i;i=edge[i].next)
    {
        int to=edge[i].to;
        if(fa[x]!=to&&to!=t&&!vis[to])
         dfs1(to);
    }
}
int LCA(int x,int y)
{
    while(top[x]!=top[y])
    {
        if(deep[top[x]]<deep[top[y]])
          swap(x,y);
        x=fa[x];
    }
    if(deep[x]>deep[y])
     swap(x,y);
    return x;
}
int main()
{
    n=read();a[]=;
    ;i<n;i++)
     x=read(),y=read(),add(x,y),add(y,x);
    dfs();memset(vis,,sizeof(vis));
    dfs1();m=read();//a[1]=read();
    ;i<=m;i++)
    {
        a[i]=read();
        lca=LCA(a[i-],a[i]);
        ans+=deep[a[i-]]+deep[a[i]]-*deep[lca];
        //printf("%d %d\n",lca,ans);
    }
    printf("%d",ans);
    ;
}

codevs——1036 商务旅行的更多相关文章

  1. 倍增法-lca codevs 1036 商务旅行

    codevs 1036 商务旅行  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题目描述 Description 某首都城市的商人要经常到各城镇去做生意 ...

  2. CodeVs.1036 商务旅行 ( LCA 最近公共祖先 )

    CodeVs.1036 商务旅行 ( LCA 最近公共祖先 ) 题意分析 某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间. 假设有N个城镇,首都编号为1,商人从 ...

  3. codevs 1036 商务旅行(Targin求LCA)

    传送门 Description 某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间. 假设有N个城镇,首都编号为1,商人从首都出发,其他各城镇之间都有道路连接,任意 ...

  4. CODEVS 1036 商务旅行

    题目描述 Description 某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间. 假设有N个城镇,首都编号为1,商人从首都出发,其他各城镇之间都有道路连接,任 ...

  5. codevs 1036 商务旅行 (倍增LCA)

    /* 在我还不知道LCA之前 暴力跑的SPFA 70分 三个点TLE */ #include<iostream> #include<cstdio> #include<cs ...

  6. 【最近公共祖先】【树链剖分】CODEVS 1036 商务旅行

    树链剖分求lca模板.O(log(n)),就是不倍增嘛~ #include<cstdio> #include<algorithm> using namespace std; # ...

  7. 【最近公共祖先】【块状树】CODEVS 1036 商务旅行

    在线块状树LCA模板. #include<cstdio> #include<vector> #include<algorithm> #include<cmat ...

  8. CODEVS——T 1036 商务旅行

    http://codevs.cn/problem/1036/  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解       题目描述 Descript ...

  9. C++之路进阶——codevs1036(商务旅行)

    1036 商务旅行 题目描述 Description 某首都城市的商人要经常到各城镇去做生意,他们按自己的路线去做,目的是为了更好的节约时间. 假设有N个城镇,首都编号为1,商人从首都出发,其他各城镇 ...

随机推荐

  1. word2vec 中的数学原理详解(二)预备知识

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/peghoty/article/details/37969635 https://blog.csdn. ...

  2. 欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍

    1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. int gcd(int x,int y){ ?x:gcd(y,x%y); } int lcm(int x,int y){ return x* ...

  3. mysql的字符串处理函数用法

    1.LOCATE函数 LOCATE(substr,str) 返回子串 substr 在字符串 str 中第一次出现的位置.如果子串 substr 在 str 中不存在,返回值为 0.如果substr或 ...

  4. Linux菜鸟起飞之路【二】Linux基本常识

    一.Unix操作系统基本常识 1.什么是Unix? Unix是一个计算机操作系统,是一个用来协调.管理和控制计算机硬件与软件资源的控制程序. 2.Unix操作系统的特点? 多用户与多任务.多用户表示在 ...

  5. PyCharm(一)——PyCharm设置SSH远程调试

    一.环境 系统环境:windows10 64位 软件:PyCharm2017.3 本地Python环境:Python2.7 二.配置 2.1配置远程调试 第一步:运行PyCharm,然后点击设置如下图 ...

  6. VS做简历的第三天(将文件中的样式保存并且导入)

    VS做简历的第三天(将文件中的样式保存并且导入) 1.先在文件栏新建一个CSS文件 如 2.将第二天如下代码,删除<stype></stype>保留中间部分,复制在CSS文件并 ...

  7. 《零基础入门学习Python》【第一版】视频课后答案第003讲

    测试题答案: 0. 以下哪个变量的命名不正确?为什么? (A) MM_520 (B) _MM520_ (C) 520_MM (D) _520_MM(C)选项不正确,因为 Python 中的变量名不能以 ...

  8. Web框架之Django_06 模型层了解(F查询、Q查询、事务、update和save、only和defer、choice属性、bulk_create)

    摘要: F查询 Q查询 事务 一.F查询 在上面所有的例子中,我们构造的过滤器都只是将字段值与某个我们自己设定的常量做比较.如果我们要对两个字段的值做比较,那该怎么做呢?Django 提供 F() 来 ...

  9. PAT Basic 1048

    1048 数字加密 本题要求实现一种数字加密方法.首先固定一个加密用正整数 A,对任一正整数 B,将其每 1 位数字与 A 的对应位置上的数字进行以下运算:对奇数位,对应位的数字相加后对 13 取余— ...

  10. 洛谷P3961 图的遍历

    题目来源 做这道题的方法不少. 在这里我只提一种 就是大法师. 可以采用反向建边,从最大的点开始dfs 我们考虑每次从所剩点中最大的一个点出发,我们暂且称它为i,而凡是i这个点所能到达的点,可以到达的 ...