【转】大素数判断和素因子分解【miller-rabin和Pollard_rho算法】
集训队有人提到这个算法,就学习一下,如果用到可以直接贴模板,例题:POJ 1811
转自:http://www.cnblogs.com/kuangbin/archive/2012/08/19/2646396.html
传说中的随机算法。
效率极高。
可以对一个2^63的素数进行判断。
可以分解比较大的数的因子。
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<time.h>
#include<iostream>
#include<algorithm>
using namespace std; //****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
const int S=;//随机算法判定次数,S越大,判错概率越小 //计算 (a*b)%c. a,b都是long long的数,直接相乘可能溢出的
// a,b,c <2^63
long long mult_mod(long long a,long long b,long long c)
{
a%=c;
b%=c;
long long ret=;
while(b)
{
if(b&){ret+=a;ret%=c;}
a<<=;
if(a>=c)a%=c;
b>>=;
}
return ret;
} //计算 x^n %c
long long pow_mod(long long x,long long n,long long mod)//x^n%c
{
if(n==)return x%mod;
x%=mod;
long long tmp=x;
long long ret=;
while(n)
{
if(n&) ret=mult_mod(ret,tmp,mod);
tmp=mult_mod(tmp,tmp,mod);
n>>=;
}
return ret;
} //以a为基,n-1=x*2^t a^(n-1)=1(mod n) 验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(long long a,long long n,long long x,long long t)
{
long long ret=pow_mod(a,x,n);
long long last=ret;
for(int i=;i<=t;i++)
{
ret=mult_mod(ret,ret,n);
if(ret==&&last!=&&last!=n-) return true;//合数
last=ret;
}
if(ret!=) return true;
return false;
} // Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false; bool Miller_Rabin(long long n)
{
if(n<)return false;
if(n==)return true;
if((n&)==) return false;//偶数
long long x=n-;
long long t=;
while((x&)==){x>>=;t++;}
for(int i=;i<S;i++)
{
long long a=rand()%(n-)+;//rand()需要stdlib.h头文件
if(check(a,n,x,t))
return false;//合数
}
return true;
} //************************************************
//pollard_rho 算法进行质因数分解
//************************************************
long long factor[];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始 long long gcd(long long a,long long b)
{
if(a==)return ;//???????
if(a<) return gcd(-a,b);
while(b)
{
long long t=a%b;
a=b;
b=t;
}
return a;
} long long Pollard_rho(long long x,long long c)
{
long long i=,k=;
long long x0=rand()%x;
long long y=x0;
while()
{
i++;
x0=(mult_mod(x0,x0,x)+c)%x;
long long d=gcd(y-x0,x);
if(d!=&&d!=x) return d;
if(y==x0) return x;
if(i==k){y=x0;k+=k;}
}
}
//对n进行素因子分解
void findfac(long long n)
{
if(Miller_Rabin(n))//素数
{
factor[tol++]=n;
return;
}
long long p=n;
while(p>=n)p=Pollard_rho(p,rand()%(n-)+);
findfac(p);
findfac(n/p);
} int main()
{
//srand(time(NULL));//需要time.h头文件//POJ上G++不能加这句话
long long n;
while(scanf("%I64d",&n)!=EOF)
{
tol=;
findfac(n);
for(int i=;i<tol;i++)printf("%I64d ",factor[i]);
printf("\n");
if(Miller_Rabin(n))printf("Yes\n");
else printf("No\n");
}
return ;
}
【转】大素数判断和素因子分解【miller-rabin和Pollard_rho算法】的更多相关文章
- 大素数判断和素因子分解(miller-rabin,Pollard_rho算法) 玄学快
大数因数分解Pollard_rho 算法 复杂度o^(1/4) #include <iostream> #include <cstdio> #include <algor ...
- 大素数判断和素因子分解(miller-rabin,Pollard_rho算法)
#include<stdio.h> #include<string.h> #include<stdlib.h> #include<time.h> #in ...
- POJ 1811 大素数判断
数据范围很大,用米勒罗宾测试和Pollard_Rho法可以分解大数. 模板在代码中 O.O #include <iostream> #include <cstdio> #inc ...
- HDU 4910 Problem about GCD 找规律+大素数判断+分解因子
Problem about GCD Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- 大素数判断(miller-Rabin测试)
题目:PolandBall and Hypothesis A. PolandBall and Hypothesis time limit per test 2 seconds memory limit ...
- HDU 3864 D_num Miller Rabin 质数推断+Pollard Rho大整数分解
链接:http://acm.hdu.edu.cn/showproblem.php? pid=3864 题意:给出一个数N(1<=N<10^18).假设N仅仅有四个约数.就输出除1外的三个约 ...
- poj 1811 Pallor Rho +Miller Rabin
/* 题目:给出一个数 如果是prime 输出prime 否则输出他的最小质因子 Miller Rabin +Poller Rho 大素数判定+大数找质因子 后面这个算法嘛 基于Birthday Pa ...
- (Miller Rabin算法)判断一个数是否为素数
1.约定 x%y为x取模y,即x除以y所得的余数,当x<y时,x%y=x,所有取模的运算对象都为整数. x^y表示x的y次方.乘方运算的优先级高于乘除和取模,加减的优先级最低. 见到x^y/z这 ...
- Miller Rabin 大素数测试
PS:本人第一次写随笔,写的不好请见谅. 接触MillerRabin算法大概是一年前,看到这个算法首先得为它的神奇之处大为赞叹,竟然可以通过几次随机数据的猜测就能判断出这数是否是素数,虽然说是有误差率 ...
随机推荐
- RSA加密算法正确性证明
RSA加密算法是利用大整数分解耗时非常大来保证加密算法不被破译. 密钥的计算过程为:首先选择两个质数p和q,令n=p*q. 令k为n的欧拉函数,k=ϕ(n)=(p−1)(q−1) 选择任意整数a,保证 ...
- 【CEOI2004】锯木厂选址
[题目描述] 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂.木材只能按照一个方向运输:朝山下运.山脚下有一个锯木厂.另外两个 ...
- 【COGS1384】鱼儿仪仗队
[题目描述] Jzyz的池塘里有很多条鱼,鱼儿们现在决定组成一个仪仗队.现在备选的N(1 <= N <= 100,000)条鱼排成了一条直线,并且按照亲近关系排的队伍,鱼儿的顺序不能改变, ...
- BroadcastReceiver监听电量变化
用BroadcastReceiver监听电量的变化,可以实现BroadcastReceiver接收电量变化的广播,然后获取电量百分比信息. BatteryChangedReceiver.java pu ...
- 谈.Net委托与线程——解决窗体假死
转自:http://www.cnblogs.com/smartls/archive/2011/04/08/2008981.html#2457370 引言 在之前的<创建无阻塞的异步调用> ...
- JS 日常
判断一个字符串是否在另一个字符串里面 var str = 'bblText'; if(str.indexOf("Text") > 0) alert("包含了Tex ...
- window.open()提交POST数据
window.open(URL,name,specs,replace) > Details 我们一般都是通过window.open(url, name, specs)以GET方式让浏览器打开 ...
- jQuery全选、反选、全不选
原文链接:https://yq.aliyun.com/articles/33443 HTML内容部分: <ul id="items"> <li> <l ...
- P1066 2^k进制数
传送门 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进 ...
- redis-cli批量删除时的坑
redis-cli keys "*"|xargs redis-cli del tips: keys后面的*号,必须要加双引号,不然删不掉 # redis-cli keys *|xa ...