拉普拉斯特征图降维及其python实现
这种方法假设样本点在光滑的流形上,这一方法的计算数据的低维表达,局部近邻信息被最优的保存。以这种方式,可以得到一个能反映流形的几何结构的解。
步骤一:构建一个图G=(V,E),其中V={vi,i=1,2,3…n}是顶点的集合,E={eij}是连接顶点的vi和vj边,图的每一个节点vi与样本集X中的一个点xi相关。如果xi,xj相距较近,我们就连接vi,vj。也就是说在各自节点插入一个边eij,如果Xj在xi的k领域中,k是定义参数。
步骤二:每个边都与一个权值Wij相对应,没有连接点之间的权值为0,连接点之间的权值:
步骤三:令,实现广义本征分解:
使是最小的m+1个本征值。忽略与
=0相关的本征向量,选取另外m个本征向量即为降维后的向量。
2.1、python实现拉普拉斯降维
def laplaEigen(dataMat,k,t):
m,n=shape(dataMat)
W=mat(zeros([m,m]))
D=mat(zeros([m,m]))
for i in range(m):
k_index=knn(dataMat[i,:],dataMat,k)
for j in range(k):
sqDiffVector = dataMat[i,:]-dataMat[k_index[j],:]
sqDiffVector=array(sqDiffVector)**2
sqDistances = sqDiffVector.sum()
W[i,k_index[j]]=math.exp(-sqDistances/t)
D[i,i]+=W[i,k_index[j]]
L=D-W
Dinv=np.linalg.inv(D)
X=np.dot(D.I,L)
lamda,f=np.linalg.eig(X)
return lamda,f
def knn(inX, dataSet, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = array(diffMat)**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
return sortedDistIndicies[0:k]
dataMat, color = make_swiss_roll(n_samples=2000)
lamda,f=laplaEigen(dataMat,11,5.0)
fm,fn =shape(f)
print 'fm,fn:',fm,fn
lamdaIndicies = argsort(lamda)
first=0
second=0
print lamdaIndicies[0], lamdaIndicies[1]
for i in range(fm):
if lamda[lamdaIndicies[i]].real>1e-5:
print lamda[lamdaIndicies[i]]
first=lamdaIndicies[i]
second=lamdaIndicies[i+1]
break
print first, second
redEigVects = f[:,lamdaIndicies]
fig=plt.figure('origin')
ax1 = fig.add_subplot(111, projection='3d')
ax1.scatter(dataMat[:, 0], dataMat[:, 1], dataMat[:, 2], c=color,cmap=plt.cm.Spectral)
fig=plt.figure('lowdata')
ax2 = fig.add_subplot(111)
ax2.scatter(f[:,first], f[:,second], c=color, cmap=plt.cm.Spectral)
plt.show()
2.2、拉普拉斯降维实验
用如下参数生成实验数据存在swissdata.dat里面:
def make_swiss_roll(n_samples=100, noise=0.0, random_state=None):
#Generate a swiss roll dataset.
t = 1.5 * np.pi * (1 + 2 * random.rand(1, n_samples))
x = t * np.cos(t)
y = 83 * random.rand(1, n_samples)
z = t * np.sin(t)
X = np.concatenate((x, y, z))
X += noise * random.randn(3, n_samples)
X = X.T
t = np.squeeze(t)
return X, t
实验结果如下:
N=5,t=15: N=7,t=15: N=9,t=15:
N=11,t=15: N=13,t=15: N=15,t=15:
N=17,t=15: N=19,t=15: N=21,t=15:
N=23,t=15: N=25,t=15: N=27,t=15:
N=29,t=15: N=31,t=15: N=33,t=15:
N=25,t=5: N=25,t=8: N=25,t=10:
N=25,t=12: N=25,t=14: N=25,t=50:
N=25,t=Inf:
拉普拉斯特征图降维及其python实现的更多相关文章
- LBP特征学习(附python实现)
LBP的全称是Local Binary Pattern即局部二值模式,是局部信息提取中的一种方法,它具有旋转不变性和灰度不变性等显著的优点.在人脸识别领域有很多案例,此外,局部特征的算法还有 SIFT ...
- 拉普拉斯特征映射(Laplacian Eigenmaps)
1 介绍 拉普拉斯特征映射(Laplacian Eigenmaps)是一种不太常见的降维算法,它看问题的角度和常见的降维算法不太相同,是从局部的角度去构建数据之间的关系.也许这样讲有些抽象,具体来讲, ...
- GhostNet: 使用简单的线性变换生成特征图,超越MobileNetV3的轻量级网络 | CVPR 2020
为了减少神经网络的计算消耗,论文提出Ghost模块来构建高效的网络结果.该模块将原始的卷积层分成两部分,先使用更少的卷积核来生成少量内在特征图,然后通过简单的线性变化操作来进一步高效地生成ghost特 ...
- 以图搜图(一):Python实现dHash算法(转)
近期研究了一下以图搜图这个炫酷的东西.百度和谷歌都有提供以图搜图的功能,有兴趣可以找一下.当然,不是很深入.深入的话,得运用到深度学习这货.Python深度学习当然不在话下. 这个功能最核心的东西就是 ...
- 卷积神经网络特征图可视化(自定义网络和VGG网络)
借助Keras和Opencv实现的神经网络中间层特征图的可视化功能,方便我们研究CNN这个黑盒子里到发生了什么. 自定义网络特征可视化 代码: # coding: utf-8 from keras.m ...
- Keras中间层输出的两种方式,即特征图可视化
训练好的模型,想要输入中间层的特征图,有两种方式: 1. 通过model.get_layer的方式.创建新的模型,输出为你要的层的名字. 创建模型,debug状态可以看到模型中,base_model/ ...
- 卷积网络中的通道(Channel)和特征图
转载自:https://www.jianshu.com/p/bf8749e15566 今天介绍卷积网络中一个很重要的概念,通道(Channel),也有叫特征图(feature map)的. 首先,之前 ...
- SLAM概念学习之特征图Feature Maps
特征图(或者叫地标图,landmark maps)利用参数化特征(如点和线)的全局位置来表示环境.如图1所示,机器人的外部环境被一些列参数化的特征,即二维坐标点表示.这些静态的地标点被观测器(装有传感 ...
- 深度学习之加载VGG19模型获取特征图
1.加载VGG19获取图片特征图 # coding = utf-8 import tensorflow as tf import numpy as np import matplotlib.pyplo ...
随机推荐
- 角色控制器 Character Controller
Unity中,1个单位尺寸代表1米.即在Unity中创建一个Cube的尺寸是1x1x1米大小. Unity推荐把人的身高定为大约2个Unity单位高度(2米). 为了截取角色的全身照,需要把角色Ins ...
- sencha touch json store
js: Ext.define('MyApp.store.MyJsonStore', { extend: 'Ext.data.Store', requires: [ 'MyApp.model.Perso ...
- c++ 联合体
联合体分配的内存大小是成员变量中最大变量的大小 联合体的成员变量共享内存 小段模式(X86就是) 低位数据存在低地址单元 大端模式 高位字节存在低地址单元
- jQuery滑动导航菜单
js: $(function(){ $("ul.sub").parent().append("<span></span>"); $(&q ...
- 为sublime text2 添加SASS语法高亮
以前写CSS时,都是直接写样式,没有任何的第三方工具,后面发现越是面向大网站,越难管理,上次参加完携程UED大会后,发现SASS对于前端团队多人协作和站点代码维护上很有帮助,很多同学都开始用了,我还是 ...
- WLLCM这五个字母全排列数目
经过训练的话一眼看出来是5!/2!:我想的是先排WLCM那么是4!,5个位置,由于L左右两边的位置其实是一样的(再插入的还是L),索以结果是4*4!,这样重复了,看下图. ...
- [转载]C#.NET中Dns类的常用方法及说明
IP是一种普遍应用于因特网.允许不同主机能够相互找到对方的寻址协议.IP地址由4个十进制的数字号码所组成,而每一个号码的值介于0~255之间,它虽然解决了网络上计算机的识别问题,但是IP地址确不容易记 ...
- 批处理:遍历输出指定后缀格式的文件名.bat
批处理:遍历输出指定后缀格式的文件名.bat @echo off type nul >C:\result.txt for /r "d:\我的文档\桌面\交接\webservice\We ...
- hdu 3483 A Very Simple Problem
两种构造的方式都是正确的: 1. #include<cstdio> #include<cstring> #include<algorithm> #define ma ...
- 实现SELECT的全选,反选,AB选的JAVASCRIPT代码
参考网上,用原生JS粗糙实现. 我发现用UIKIT的BUTTON会自动刷新我那核心的模态窗口,只好用另外的LABEL或CODE标签了. $(".btn-select-all").c ...