【原】Spark不同运行模式下资源分配源码解读
版权声明:本文为原创文章,未经允许不得转载。
复习内容:
Spark中Task的提交源码解读 http://www.cnblogs.com/yourarebest/p/5423906.html
SchedulerBackend是一个trait,它配合TaskSchedulerImpl共同完成Task调度、执行、资源的分配等。它的子类如下所示,不同的子类对应的不同Spark不同的资源分配调度。详见图1。
图1 SchedulerBackend子类继承图
Spark中不同(集群)模式进行资源的分配是通过调用backend.reviveOffers()方法来给Task分配资源的,其调度子类与其负责的运行模式如下所示:
LocalBackend
(1)本地单线程运行模式,master形如local
(2)本地多线程运行模式,匹配local[N]和Local[*],
(3)匹配local[*, M]和local[N, M]
SparkDeploySchedulerBackend
(4)匹配Spark Standalone运行模式
(5)匹配local-cluster运行模式即伪分布模式
YarnClusterSchedulerBackend
(6)"yarn-standalone"或"yarn-cluster"运行模式,
(7)yarn-client运行模式
CoarseMesosSchedulerBackend(粗粒度)和MesosSchedulerBackend(细粒度)
(8)匹配Mesos运行模式,mesos有粗粒度和细粒度两种调度模式。
补充:细粒度模式目前仅支持Mesos。
粗粒度调度模式中,每个Executor在获得系统资源后,就长期拥有,直到应用程序退出才释放资源。优点:减少了资源调度的时间开销,缺点:所分配的资源被某个应用长期占有,造成资源的浪费。
细粒度调度模式中,资源是根据任务的需求动态调度的,任务完成后就还给Mesos,所以不存在资源浪费的问题,但调度延迟较大。
1.LocalBackend
调用远程的一个引用申请资源,该远程引用已在start方法中赋值
override def reviveOffers() {
localEndpoint.send(ReviveOffers)
}
LocalBackend收到远程的ReviveOffers消息在receive方法中进行消息的匹配,进行资源的分配,如下所示:
override def receive: PartialFunction[Any, Unit] = {
case ReviveOffers =>
reviveOffers()详见(1)
case StatusUpdate(taskId, state, serializedData) =>
scheduler.statusUpdate(taskId, state, serializedData)
if (TaskState.isFinished(state)) {
freeCores += scheduler.CPUS_PER_TASK
reviveOffers()
}
case KillTask(taskId, interruptThread) =>
executor.killTask(taskId, interruptThread)
}
(1)方法 reviveOffers()如下所示:
def reviveOffers() {
val offers = Seq(new WorkerOffer(localExecutorId, localExecutorHostname, freeCores))
for (task <- scheduler.resourceOffers(offers).flatten) {
freeCores -= scheduler.CPUS_PER_TASK
//在executor上创建Task
executor.launchTask(executorBackend, taskId = task.taskId, attemptNumber = task.attemptNumber,
task.name, task.serializedTask)
}
}
2.SparkDeploySchedulerBackend
由图1 SchedulerBackend子类继承我们知道SparkDeploySchedulerBackend是类CoarseGrainedSchedulerBackend的子类,属于粗粒度调度模式,类CoarseGrainedSchedulerBackend的子类的调度都是通过它的reviveOffers方法来完成的,因为都属于粗粒度调度模式。
远程引用申请资源
override def reviveOffers() {
driverEndpoint.send(ReviveOffers)
}
同样在receive方法匹配ReviveOffers 消息,调用方法 makeOffers()
override def receive: PartialFunction[Any, Unit] = {
case ReviveOffers =>
makeOffers()详见(1)
(1)makeOffers()方法如下所示
private def makeOffers() {
//过滤掉正在kill的executor
val activeExecutors = executorDataMap.filterKeys(!executorsPendingToRemove.contains(_))
val workOffers = activeExecutors.map { case (id, executorData) =>
new WorkerOffer(id, executorData.executorHost, executorData.freeCores)
}.toSeq
//创建tasks
launchTasks(scheduler.resourceOffers(workOffers))详见(2)(3)
}
(2)scheduler.resourceOffers(workOffers)方法如下所示,TaskScheduleImpl调用提供slaves上的资源。我们通过按照激活的task set的优先级。我们以循环的方式将tasks均匀分配到节点上
def resourceOffers(offers: Seq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized {
var newExecAvail = false
//对于每一个Executor进行如下操作,主要进行slave的hostname与executor的映射
for (o <- offers) {
executorIdToHost(o.executorId) = o.host
activeExecutorIds += o.executorId
if (!executorsByHost.contains(o.host)) {
executorsByHost(o.host) = new HashSetString
executorAdded(o.executorId, o.host)
newExecAvail = true
}
for (rack <- getRackForHost(o.host)) {
hostsByRack.getOrElseUpdate(rack, new HashSetString) += o.host
}
}
//随机shuffle操作避免将tasks分配到同样的一批workers上
val shuffledOffers = Random.shuffle(offers)
// Build a list of tasks to assign to each worker.
val tasks = shuffledOffers.map(o => new ArrayBufferTaskDescription)
val availableCpus = shuffledOffers.map(o => o.cores).toArray
//根据调度策略获取TaskSetManage的调度顺序
val sortedTaskSets = rootPool.getSortedTaskSetQueue
for (taskSet <- sortedTaskSets) {
logDebug("parentName: %s, name: %s, runningTasks: %s".format(
taskSet.parent.name, taskSet.name, taskSet.runningTasks))
if (newExecAvail) {
taskSet.executorAdded()
}
}
//根据调度策略依次得到TaskSet,
//在节点上尝试5种Locality,PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY
//以最快的速度执行task
var launchedTask = false
for (taskSet <- sortedTaskSets; maxLocality <- taskSet.myLocalityLevels) {
do {
launchedTask = resourceOfferSingleTaskSet(
taskSet, maxLocality, shuffledOffers, availableCpus, tasks)
} while (launchedTask)
}
if (tasks.size > 0) {
hasLaunchedTask = true
}
return tasks
}
(3)launchTasks方法如下所示
private def launchTasks(tasks: Seq[Seq[TaskDescription]]) {
for (task <- tasks.flatten) {
//序列化task
val serializedTask = ser.serialize(task)
if (serializedTask.limit >= akkaFrameSize - AkkaUtils.reservedSizeBytes) {
scheduler.taskIdToTaskSetManager.get(task.taskId).foreach { taskSetMgr =>
try {
var msg = "Serialized task %s:%d was %d bytes, which exceeds max allowed: " +
"spark.akka.frameSize (%d bytes) - reserved (%d bytes). Consider increasing " +
"spark.akka.frameSize or using broadcast variables for large values."
msg = msg.format(task.taskId, task.index, serializedTask.limit, akkaFrameSize,
AkkaUtils.reservedSizeBytes)
taskSetMgr.abort(msg)
} catch {
case e: Exception => logError("Exception in error callback", e)
}
}
}
else {
val executorData = executorDataMap(task.executorId)
executorData.freeCores -= scheduler.CPUS_PER_TASK
//类CoarseGrainedExecutorBackend在Executor上反序列化task并完成task的创建
executorData.executorEndpoint.send(LaunchTask(new SerializableBuffer(serializedTask)))
}
}
}
3.MesosSchedulerBackend
Mesos细粒度调度模式时通过Mesos中的类MesosSchedulerDriver来完成调度,有兴趣的读者可以看一下。这里就不介绍了
【原】Spark不同运行模式下资源分配源码解读的更多相关文章
- Spark的 运行模式详解
Spark的运行模式是多种多样的,那么在这篇博客中谈一下Spark的运行模式 一:Spark On Local 此种模式下,我们只需要在安装Spark时不进行hadoop和Yarn的环境配置,只要将S ...
- Unity非运行模式下实现动画播放/回退工具
实现效果 核心功能 支持选定模型(带Animator)在非运行模式下,播放/暂停/停止动作. 支持动作单帧前进,单帧回退(帧时间默认0.05f,可以代码设置). 支持滚动条拖拽,将动作调整到指定时间. ...
- 【原】Spark中Job的提交源码解读
版权声明:本文为原创文章,未经允许不得转载. Spark程序程序job的运行是通过actions算子触发的,每一个action算子其实是一个runJob方法的运行,详见文章 SparkContex源码 ...
- spark on yarn模式下配置spark-sql访问hive元数据
spark on yarn模式下配置spark-sql访问hive元数据 目的:在spark on yarn模式下,执行spark-sql访问hive的元数据.并对比一下spark-sql 和hive ...
- spark 在yarn模式下提交作业
1.spark在yarn模式下提交作业需要启动hdfs集群和yarn,具体操作参照:hadoop 完全分布式集群搭建 2.spark需要配置yarn和hadoop的参数目录 将spark/conf/目 ...
- 【原】SparkContex源码解读(二)
版权声明:本文为原创文章,未经允许不得转载. 继续前一篇的内容.前一篇内容为: SparkContex源码解读(一)http://www.cnblogs.com/yourarebest/p/53266 ...
- Spark jdbc postgresql数据库连接和写入操作源码解读
概述:Spark postgresql jdbc 数据库连接和写入操作源码解读,详细记录了SparkSQL对数据库的操作,通过java程序,在本地开发和运行.整体为,Spark建立数据库连接,读取数据 ...
- AFNetworking 3.0 源码解读 总结(干货)(下)
承接上一篇AFNetworking 3.0 源码解读 总结(干货)(上) 21.网络服务类型NSURLRequestNetworkServiceType 示例代码: typedef NS_ENUM(N ...
- Spark Streaming揭秘 Day23 启动关闭源码图解
Spark Streaming揭秘 Day23 启动关闭源码图解 今天主要分析一下SparkStreaming的启动和关闭过程. 从Demo程序出发,主要聚焦在两段代码: 启动代码: 关闭代码: 启动 ...
随机推荐
- 关于Angular.js Routing 的学习笔记(实现单页应用)
最近开始学习angular.js,发现angular.js确实很方便,也很强大.在看到 AngularJS Routing and Multiple Views 这一部分的时候,有点乱.现在通过记录一 ...
- 第一部分实现功能:使用一个TabControl和一个Memo和TDictionary类实现文本临时存储
效果图: 一期功能概要: a.双击tab关闭tab,双击tab右边空白添加tab(标题为以hhnnsszzz的时间格式命名) b.切换tab将数据存入dictionary,key为标题,value为m ...
- Python设计模式——单例模式
单例模式是日常应用中最广泛的模式了,其目的就是令到单个进程中只存在一个类的实例,从而可以实现数据的共享,节省系统开销,防止io阻塞等等 但是在多进程的应用中,单例模式就实现不了了,例如一些web应用, ...
- 【JPA】表达条件查询的关键字
1.通过解析方法名创建查询 框架在进行方法名解析时,会先把方法名多余的前缀截取掉,比如 find.findBy.read.readBy.get.getBy,然后对剩下部分进行解析.并且如果方法的最后一 ...
- display:inline-block元素间空白间隙问题
display:inline-block元素间有空白间隙,可以在父元素上加font-size:0
- input标签文字点击变颜色
<input type="text" class="ser_input"value="从这里搜索(^_^)" onfocus=&quo ...
- Hadoop集群系类文章
http://www.cnblogs.com/xia520pi/archive/2012/04/08/2437875.html 后续文章地址:http://www.xiapistudio.com/ta ...
- zepto源码学习-04 event
之前说完$(XXX),然后还有很多零零碎碎的东西需要去分析,结果一看代码,发现zepto的实现都相对简单,没有太多可分析的.直接略过了一些实现,直接研究Event模块,相比JQuery的事件系统,ze ...
- 第八章CDC设备
8.1 CDC设备介绍 USB的CDC类是USB通信设备类(Communication Device Class)的简称.CDC类是USB组织定义的一类专门给各种通信设备(电信通信设备和中速网络通信设 ...
- 我的Photoshop第一个作品
想学Photoshop好久了, 作为一个想成为"将计算机技术和艺术结合起来的人", 不会Photoshop感觉说不过去. 先选了一个图尝试做, 结果发现太难了. 我给背景上色, 画 ...