主成份分析PCA
Data Mining
主成分分析PCA
降维的必要性
1.多重共线性--预测变量之间相互关联。多重共线性会导致解空间的不稳定,从而可能导致结果的不连贯。
2.高维空间本身具有稀疏性。一维正态分布有68%的值落于正负标准差之间,而在十维空间上只有0.02%。
3.过多的变量会妨碍查找规律的建立。
4.仅在变量层面上分析可能会忽略变量之间的潜在联系。例如几个预测变量可能落入仅反映数据某一方面特征的一个组内。
降维的目的:
1.减少预测变量的个数
2.确保这些变量是相互独立的
3.提供一个框架来解释结果
降维的方法有:主成分分析、因子分析、用户自定义复合等。
PCA(Principal Component Analysis)不仅仅是对高维数据进行降维,更重要的是经过降维去除了噪声,发现了数据中的模式。
PCA把原先的n个特征用数目更少的m个特征取代,新特征是旧特征的线性组合,这些线性组合最大化样本方差,尽量使新的m个特征互不相关。从旧特征到新特征的映射捕获数据中的固有变异性。
预备知识
样本X和样本Y的协方差(Covariance):
协方差为正时说明X和Y是正相关关系,协方差为负时X和Y是负相关关系,协方差为0时X和Y相互独立。
Cov(X,X)就是X的方差(Variance).
当样本是n维数据时,它们的协方差实际上是协方差矩阵(对称方阵),方阵的边长是。比如对于3维数据(x,y,z),计算它的协方差就是:
若,则称是A的特征值,X是对应的特征向量。实际上可以这样理解:矩阵A作用在它的特征向量X上,仅仅使得X的长度发生了变化,缩放比例就是相应的特征值。
当A是n阶可逆矩阵时,A与P-1Ap相似,相似矩阵具有相同的特征值。
特别地,当A是对称矩阵时,A的奇异值等于A的特征值,存在正交矩阵Q(Q-1=QT),使得:
对A进行奇异值分解就能求出所有特征值和Q矩阵。
D是由特征值组成的对角矩阵
由特征值和特征向量的定义知,Q的列向量就是A的特征向量。
Jama包
Jama包是用于基本线性代数运算的java包,提供矩阵的cholesky分解、LUD分解、QR分解、奇异值分解,以及PCA中要用到的特征值分解,此外可以计算矩阵的乘除法、矩阵的范数和条件数、解线性方程组等。
PCA过程
1.特征中心化。即每一维的数据都减去该维的均值。这里的“维”指的就是一个特征(或属性),变换之后每一维的均值都变成了0。
很多数据挖掘的教材上都会讲到鹫尾花的例子,本文就拿它来做计算。原始数据是150×4的矩阵A:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
5.1 3.5 1.4 0.2 4.9 3.0 1.4 0.2 4.7 3.2 1.3 0.2 4.6 3.1 1.5 0.2 5.0 3.6 1.4 0.2 5.4 3.9 1.7 0.4 4.6 3.4 1.4 0.3 5.0 3.4 1.5 0.2 4.4 2.9 1.4 0.2 4.9 3.1 1.5 0.1 5.4 3.7 1.5 0.2 4.8 3.4 1.6 0.2 4.8 3.0 1.4 0.1 4.3 3.0 1.1 0.1 5.8 4.0 1.2 0.2 5.7 4.4 1.5 0.4 5.4 3.9 1.3 0.4 5.1 3.5 1.4 0.3 5.7 3.8 1.7 0.3 5.1 3.8 1.5 0.3 5.4 3.4 1.7 0.2 5.1 3.7 1.5 0.4 4.6 3.6 1.0 0.2 5.1 3.3 1.7 0.5 4.8 3.4 1.9 0.2 5.0 3.0 1.6 0.2 5.0 3.4 1.6 0.4 5.2 3.5 1.5 0.2 5.2 3.4 1.4 0.2 4.7 3.2 1.6 0.2 4.8 3.1 1.6 0.2 5.4 3.4 1.5 0.4 5.2 4.1 1.5 0.1 5.5 4.2 1.4 0.2 4.9 3.1 1.5 0.1 5.0 3.2 1.2 0.2 5.5 3.5 1.3 0.2 4.9 3.1 1.5 0.1 4.4 3.0 1.3 0.2 5.1 3.4 1.5 0.2 5.0 3.5 1.3 0.3 4.5 2.3 1.3 0.3 4.4 3.2 1.3 0.2 5.0 3.5 1.6 0.6 5.1 3.8 1.9 0.4 4.8 3.0 1.4 0.3 5.1 3.8 1.6 0.2 4.6 3.2 1.4 0.2 5.3 3.7 1.5 0.2 5.0 3.3 1.4 0.2 7.0 3.2 4.7 1.4 6.4 3.2 4.5 1.5 6.9 3.1 4.9 1.5 5.5 2.3 4.0 1.3 6.5 2.8 4.6 1.5 5.7 2.8 4.5 1.3 6.3 3.3 4.7 1.6 4.9 2.4 3.3 1.0 6.6 2.9 4.6 1.3 5.2 2.7 3.9 1.4 5.0 2.0 3.5 1.0 5.9 3.0 4.2 1.5 6.0 2.2 4.0 1.0 6.1 2.9 4.7 1.4 5.6 2.9 3.6 1.3 6.7 3.1 4.4 1.4 5.6 3.0 4.5 1.5 5.8 2.7 4.1 1.0 6.2 2.2 4.5 1.5 5.6 2.5 3.9 1.1 5.9 3.2 4.8 1.8 6.1 2.8 4.0 1.3 6.3 2.5 4.9 1.5 6.1 2.8 4.7 1.2 6.4 2.9 4.3 1.3 6.6 3.0 4.4 1.4 6.8 2.8 4.8 1.4 6.7 3.0 5.0 1.7 6.0 2.9 4.5 1.5 5.7 2.6 3.5 1.0 5.5 2.4 3.8 1.1 5.5 2.4 3.7 1.0 5.8 2.7 3.9 1.2 6.0 2.7 5.1 1.6 5.4 3.0 4.5 1.5 6.0 3.4 4.5 1.6 6.7 3.1 4.7 1.5 6.3 2.3 4.4 1.3 5.6 3.0 4.1 1.3 5.5 2.5 4.0 1.3 5.5 2.6 4.4 1.2 6.1 3.0 4.6 1.4 5.8 2.6 4.0 1.2 5.0 2.3 3.3 1.0 5.6 2.7 4.2 1.3 5.7 3.0 4.2 1.2 5.7 2.9 4.2 1.3 6.2 2.9 4.3 1.3 5.1 2.5 3.0 1.1 5.7 2.8 4.1 1.3 6.3 3.3 6.0 2.5 5.8 2.7 5.1 1.9 7.1 3.0 5.9 2.1 6.3 2.9 5.6 1.8 6.5 3.0 5.8 2.2 7.6 3.0 6.6 2.1 4.9 2.5 4.5 1.7 7.3 2.9 6.3 1.8 6.7 2.5 5.8 1.8 7.2 3.6 6.1 2.5 6.5 3.2 5.1 2.0 6.4 2.7 5.3 1.9 6.8 3.0 5.5 2.1 5.7 2.5 5.0 2.0 5.8 2.8 5.1 2.4 6.4 3.2 5.3 2.3 6.5 3.0 5.5 1.8 7.7 3.8 6.7 2.2 7.7 2.6 6.9 2.3 6.0 2.2 5.0 1.5 6.9 3.2 5.7 2.3 5.6 2.8 4.9 2.0 7.7 2.8 6.7 2.0 6.3 2.7 4.9 1.8 6.7 3.3 5.7 2.1 7.2 3.2 6.0 1.8 6.2 2.8 4.8 1.8 6.1 3.0 4.9 1.8 6.4 2.8 5.6 2.1 7.2 3.0 5.8 1.6 7.4 2.8 6.1 1.9 7.9 3.8 6.4 2.0 6.4 2.8 5.6 2.2 6.3 2.8 5.1 1.5 6.1 2.6 5.6 1.4 7.7 3.0 6.1 2.3 6.3 3.4 5.6 2.4 6.4 3.1 5.5 1.8 6.0 3.0 4.8 1.8 6.9 3.1 5.4 2.1 6.7 3.1 5.6 2.4 6.9 3.1 5.1 2.3 5.8 2.7 5.1 1.9 6.8 3.2 5.9 2.3 6.7 3.3 5.7 2.5 6.7 3.0 5.2 2.3 6.3 2.5 5.0 1.9 6.5 3.0 5.2 2.0 6.2 3.4 5.4 2.3 5.9 3.0 5.1 1.8 |
每一列减去该列均值后,得到矩阵B:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
-0.743333 0.446 -2.35867 -0.998667 -0.943333 -0.054 -2.35867 -0.998667 -1.14333 0.146 -2.45867 -0.998667 -1.24333 0.046 -2.25867 -0.998667 -0.843333 0.546 -2.35867 -0.998667 -0.443333 0.846 -2.05867 -0.798667 -1.24333 0.346 -2.35867 -0.898667 -0.843333 0.346 -2.25867 -0.998667 -1.44333 -0.154 -2.35867 -0.998667 -0.943333 0.046 -2.25867 -1.09867 -0.443333 0.646 -2.25867 -0.998667 -1.04333 0.346 -2.15867 -0.998667 -1.04333 -0.054 -2.35867 -1.09867 -1.54333 -0.054 -2.65867 -1.09867 -0.0433333 0.946 -2.55867 -0.998667 -0.143333 1.346 -2.25867 -0.798667 -0.443333 0.846 -2.45867 -0.798667 -0.743333 0.446 -2.35867 -0.898667 -0.143333 0.746 -2.05867 -0.898667 -0.743333 0.746 -2.25867 -0.898667 -0.443333 0.346 -2.05867 -0.998667 -0.743333 0.646 -2.25867 -0.798667 -1.24333 0.546 -2.75867 -0.998667 -0.743333 0.246 -2.05867 -0.698667 -1.04333 0.346 -1.85867 -0.998667 -0.843333 -0.054 -2.15867 -0.998667 -0.843333 0.346 -2.15867 -0.798667 -0.643333 0.446 -2.25867 -0.998667 -0.643333 0.346 -2.35867 -0.998667 -1.14333 0.146 -2.15867 -0.998667 -1.04333 0.046 -2.15867 -0.998667 -0.443333 0.346 -2.25867 -0.798667 -0.643333 1.046 -2.25867 -1.09867 -0.343333 1.146 -2.35867 -0.998667 -0.943333 0.046 -2.25867 -1.09867 -0.843333 0.146 -2.55867 -0.998667 -0.343333 0.446 -2.45867 -0.998667 -0.943333 0.046 -2.25867 -1.09867 -1.44333 -0.054 -2.45867 -0.998667 -0.743333 0.346 -2.25867 -0.998667 -0.843333 0.446 -2.45867 -0.898667 -1.34333 -0.754 -2.45867 -0.898667 -1.44333 0.146 -2.45867 -0.998667 -0.843333 0.446 -2.15867 -0.598667 -0.743333 0.746 -1.85867 -0.798667 -1.04333 -0.054 -2.35867 -0.898667 -0.743333 0.746 -2.15867 -0.998667 -1.24333 0.146 -2.35867 -0.998667 -0.543333 0.646 -2.25867 -0.998667 -0.843333 0.246 -2.35867 -0.998667 1.15667 0.146 0.941333 0.201333 0.556667 0.146 0.741333 0.301333 1.05667 0.046 1.14133 0.301333 -0.343333 -0.754 0.241333 0.101333 0.656667 -0.254 0.841333 0.301333 -0.143333 -0.254 0.741333 0.101333 0.456667 0.246 0.941333 0.401333 -0.943333 -0.654 -0.458667 -0.198667 0.756667 -0.154 0.841333 0.101333 -0.643333 -0.354 0.141333 0.201333 -0.843333 -1.054 -0.258667 -0.198667 0.0566667 -0.054 0.441333 0.301333 0.156667 -0.854 0.241333 -0.198667 0.256667 -0.154 0.941333 0.201333 -0.243333 -0.154 -0.158667 0.101333 0.856667 0.046 0.641333 0.201333 -0.243333 -0.054 0.741333 0.301333 -0.0433333 -0.354 0.341333 -0.198667 0.356667 -0.854 0.741333 0.301333 -0.243333 -0.554 0.141333 -0.0986667 0.0566667 0.146 1.04133 0.601333 0.256667 -0.254 0.241333 0.101333 0.456667 -0.554 1.14133 0.301333 0.256667 -0.254 0.941333 0.00133333 0.556667 -0.154 0.541333 0.101333 0.756667 -0.054 0.641333 0.201333 0.956667 -0.254 1.04133 0.201333 0.856667 -0.054 1.24133 0.501333 0.156667 -0.154 0.741333 0.301333 -0.143333 -0.454 -0.258667 -0.198667 -0.343333 -0.654 0.0413333 -0.0986667 -0.343333 -0.654 -0.0586667 -0.198667 -0.0433333 -0.354 0.141333 0.00133333 0.156667 -0.354 1.34133 0.401333 -0.443333 -0.054 0.741333 0.301333 0.156667 0.346 0.741333 0.401333 0.856667 0.046 0.941333 0.301333 0.456667 -0.754 0.641333 0.101333 -0.243333 -0.054 0.341333 0.101333 -0.343333 -0.554 0.241333 0.101333 -0.343333 -0.454 0.641333 0.00133333 0.256667 -0.054 0.841333 0.201333 -0.0433333 -0.454 0.241333 0.00133333 -0.843333 -0.754 -0.458667 -0.198667 -0.243333 -0.354 0.441333 0.101333 -0.143333 -0.054 0.441333 0.00133333 -0.143333 -0.154 0.441333 0.101333 0.356667 -0.154 0.541333 0.101333 -0.743333 -0.554 -0.758667 -0.0986667 -0.143333 -0.254 0.341333 0.101333 0.456667 0.246 2.24133 1.30133 -0.0433333 -0.354 1.34133 0.701333 1.25667 -0.054 2.14133 0.901333 0.456667 -0.154 1.84133 0.601333 0.656667 -0.054 2.04133 1.00133 1.75667 -0.054 2.84133 0.901333 -0.943333 -0.554 0.741333 0.501333 1.45667 -0.154 2.54133 0.601333 0.856667 -0.554 2.04133 0.601333 1.35667 0.546 2.34133 1.30133 0.656667 0.146 1.34133 0.801333 0.556667 -0.354 1.54133 0.701333 0.956667 -0.054 1.74133 0.901333 -0.143333 -0.554 1.24133 0.801333 -0.0433333 -0.254 1.34133 1.20133 0.556667 0.146 1.54133 1.10133 0.656667 -0.054 1.74133 0.601333 1.85667 0.746 2.94133 1.00133 1.85667 -0.454 3.14133 1.10133 0.156667 -0.854 1.24133 0.301333 1.05667 0.146 1.94133 1.10133 -0.243333 -0.254 1.14133 0.801333 1.85667 -0.254 2.94133 0.801333 0.456667 -0.354 1.14133 0.601333 0.856667 0.246 1.94133 0.901333 1.35667 0.146 2.24133 0.601333 0.356667 -0.254 1.04133 0.601333 0.256667 -0.054 1.14133 0.601333 0.556667 -0.254 1.84133 0.901333 1.35667 -0.054 2.04133 0.401333 1.55667 -0.254 2.34133 0.701333 2.05667 0.746 2.64133 0.801333 0.556667 -0.254 1.84133 1.00133 0.456667 -0.254 1.34133 0.301333 0.256667 -0.454 1.84133 0.201333 1.85667 -0.054 2.34133 1.10133 0.456667 0.346 1.84133 1.20133 0.556667 0.046 1.74133 0.601333 0.156667 -0.054 1.04133 0.601333 1.05667 0.046 1.64133 0.901333 0.856667 0.046 1.84133 1.20133 1.05667 0.046 1.34133 1.10133 -0.0433333 -0.354 1.34133 0.701333 0.956667 0.146 2.14133 1.10133 0.856667 0.246 1.94133 1.30133 0.856667 -0.054 1.44133 1.10133 0.456667 -0.554 1.24133 0.701333 0.656667 -0.054 1.44133 0.801333 0.356667 0.346 1.64133 1.10133 0.0566667 -0.054 1.34133 0.601333 |
2.计算B的协方差矩阵C:
1
2
3
4
|
0.685694 -0.0392685 1.27368 0.516904 -0.0392685 0.188004 -0.321713 -0.117981 1.27368 -0.321713 3.11318 1.29639 0.516904 -0.117981 1.29639 0.582414 |
4.2248414 0 0 0
0 0.24224437 0 0
0 0 0.078524387 0
0 0 0 0.023681839
V=
0.36158919 0.65654382 -0.58100304 0.3172364
-0.082268924 0.72970845 0.596429220 -0.3240827
0.85657212 -0.17576972 0. 072535217 -0.47971643
0.35884438 -0.074704743 0.54904125 0.75113489
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
2.8271335 5.6413345 2.7959501 5.1451715 2.6215213 5.1773814 2.7649037 5.0036022 2.7827477 5.648651 3.2314432 6.0625092 2.6904502 5.2326213 2.8848587 5.4851323 2.6233824 4.7439288 2.837496 5.2080359 3.0048137 5.9666624 2.898198 5.3362466 2.7239067 5.0869876 2.2861405 4.8114466 2.867797 6.5009233 3.127471 6.6594805 2.8888143 6.132817 2.8630179 5.633864 3.3122624 6.1939719 2.9239945 5.8351996 3.2008088 5.7125959 2.9681058 5.7547583 2.2954831 5.4563413 3.2082122 5.4202505 3.1551697 5.2835156 3.0034234 5.1756719 3.0422848 5.4526144 2.9489496 5.6894119 2.8715193 5.634018 2.8784929 5.1246505 2.9228787 5.117334 3.1012632 5.7328089 2.8637038 6.1347075 2.9141809 6.4147479 2.837496 5.2080359 2.6443408 5.3919215 2.8861119 5.921529 2.837496 5.2080359 2.5294983 4.8344766 2.9210176 5.5507867 2.7412018 5.5857866 2.6591299 4.3818646 2.5130445 4.9804183 3.1058267 5.5106443 3.3025077 5.7574212 2.7956756 5.0720467 2.9737672 5.8250931 2.6710196 5.0941501 2.9686547 5.901008 2.8074283 5.4297384 6.7961349 6.0001695 6.4437514 5.6339266 6.9754017 5.8189198 5.6923082 4.4891254 6.5984751 5.3901207 6.1517776 4.8974035 6.6065644 5.5986187 4.759874 4.3136202 6.5546382 5.5436868 5.5011511 4.5941521 5.0002549 4.0522372 6.0224389 5.2124439 5.7736764 4.7668379 6.4953853 5.1903675 5.3364769 5.0629127 6.4389134 5.7829664 6.1709338 4.9627499 5.7458813 4.9828064 6.4537025 4.7729094 5.5545872 4.7332394 6.6275817 5.2305124 5.8681272 5.2479059 6.8078095 4.9871684 6.4318433 5.1323376 6.2253487 5.465109 6.4109813 5.6443412 6.8423818 5.5594003 7.0687368 5.5821223 6.3237964 5.1523966 5.204006 4.949643 5.440998 4.6121911 5.3194564 4.6372386 5.6463357 5.0030194 6.8900779 4.8935226 6.098616 4.8314411 6.3185463 5.5097803 6.7317694 5.722765 6.3242084 4.9440526 5.7565361 5.0479987 5.6758544 4.6350671 5.9743719 4.6452005 6.4015012 5.2809153 5.7402198 4.9124716 4.8042598 4.3063037 5.866874 4.8115092 5.8424678 5.1035466 5.8865791 5.0231053 6.1530309 5.3338002 4.6028777 4.5631602 5.8091488 4.9677114 8.0430681 5.3028838 6.9254133 4.7398024 8.1278252 5.6566652 7.4821558 5.1336016 7.8610989 5.2728454 8.9082203 5.8618983 6.0307247 4.123374 8.4433454 5.6671066 7.8310134 5.0691818 8.4294749 6.0951088 7.1732758 5.5567668 7.3136813 5.0985747 7.6767196 5.5300099 6.8559354 4.5383128 7.0966086 4.7754209 7.4160846 5.4335471 7.4605895 5.3554582 9.0001057 6.486272 9.3060273 5.5679974 6.8096707 4.5537158 7.939508 5.6915111 6.7094386 4.7091479 9.0106057 5.7715045 6.8990091 5.1106987 7.7871944 5.6481141 8.1255342 5.8730957 6.7689661 5.1355922 6.8020106 5.1983025 7.6341949 5.1038737 7.8989047 5.7772489 8.3523013 5.6874736 8.743683 6.6852526 7.6700793 5.0964032 6.9544433 5.170927 7.2909809 4.8132622 8.587862 6.0004966 7.6563279 5.453633 7.4162037 5.3627746 6.6801944 5.1502251 7.6189944 5.6862121 7.8256443 5.497338 7.4337916 5.7240021 6.9254133 4.7398024 8.0746635 5.5907028 7.9307322 5.6182322 7.4553579 5.5021455 7.0370045 4.9397096 7.2753867 5.3932482 7.4129702 5.430603 6.9010071 5.0318398 |
每个样本正好是二维的,画在平面坐标系中如图:
鹫尾花数据集共分为3类花(前50个样本为一类,中间50个样本为一类,后50个样本为一类),从上图可以看到把数据集映射到2维后分类会更容易进行,直观上看已经是线性可分的了,下面我们用自组织映射网络对其进行聚类。
当然我们已知了有3类,所以在设计SOFM网络时,我把竞争层节点数设为3,此时的聚类结果是前50个样本聚为一类,后100个样本聚为一类。当把竞争层节点数改为4时,仅第2类中的3个样本被误分到了第3类中,整体精度达98%!
#include<iostream> #include<fstream> #include<set> #include<cstdlib> #include<vector> #include<cmath> #include<ctime> using namespace std; const int sample_num=150; //鹫尾花样本个数 const int class_num=4; //指定聚类的数目 int iteration_ceil; //迭代的上限 vector<pair< double , double > > flowers(sample_num); //样本数据 vector<vector< double > > weight(class_num); //权向量 const double prime_eta=0.7; //初始学习率 /*向量模长归一化*/ void normalize(vector< double > &vec){ double sum=0.0; for ( int i=0;i<vec.size();++i) sum+= pow (vec[i],2); sum= sqrt (sum); for ( int i=0;i<vec.size();++i) vec[i]/=sum; } /*从文件读入鹫尾花样本数据*/ void init_sample(string filename){ ifstream ifs(filename.c_str()); if (!ifs){ cerr<< "open data file failed." <<endl; exit (1); } for ( int i=0;i<sample_num;++i){ vector< double > X(2); ifs>>X[0]>>X[1]; normalize(X); //输入向量模长归一化 flowers[i]=make_pair(X[0],X[1]); } ifs.close(); } /*初始化权值*/ void init_weight(){ srand ( time (0)); for ( int i=0;i<weight.size();++i){ vector< double > ele(2); ele[0]= rand ()/( double )RAND_MAX; ele[1]= rand ()/( double )RAND_MAX; normalize(ele); //权值向量模长归一化 weight[i]=ele; } } /*根据输入,选择获胜者*/ int pick_winner( double x1, double x2){ int rect=-1; double max=0.0; for ( int i=0;i<weight.size();++i){ double product=x1*weight[i][0]+x2*weight[i][1]; if (product>max){ max=product; rect=i; } } return rect; } int main( int argc, char *argv[]){ cout<< "input iteration count" <<endl; int count; //每个样本迭代的次数 cin>>count; cout<< "input data file name" <<endl; string filename; cin>>filename; iteration_ceil=count*sample_num; init_sample(filename); init_weight(); double eta=prime_eta; double gradient1=-1*9*prime_eta/iteration_ceil; double gradient2=-1*prime_eta/(9*iteration_ceil); double b1=prime_eta; double b2=prime_eta/9; for ( int iteration=0;iteration<iteration_ceil;++iteration){ int flower_index=iteration%sample_num; double x1=flowers[flower_index].first; double x2=flowers[flower_index].second; int winner=pick_winner(x1,x2); /*更改获胜者的权值*/ weight[winner][0]+=eta*(x1-weight[winner][0]); weight[winner][1]+=eta*(x2-weight[winner][1]); /*权向量归一化*/ for ( int i=0;i<weight.size();++i){ vector< double > W(2); W[0]=weight[i][0]; W[1]=weight[i][1]; normalize(W); weight[i][0]=W[0]; weight[i][1]=W[1]; } /*更新学习率*/ if (iteration<0.1*iteration_ceil){ //在前10%的迭代中,学习率线性下降到原来的10% eta=gradient1*iteration+b1; } else { //后90%的迭代中线性降低到0 eta=gradient2*iteration+b2; } } for ( int i=0;i<sample_num;++i){ double x1=flowers[i].first; double x2=flowers[i].second; int winner=pick_winner(x1,x2); cout<<i+1<< "\t" <<winner+1<<endl; } return 0; } |
输出聚类结果:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
|
1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 2 10 2 11 2 12 2 13 2 14 2 15 2 16 2 17 2 18 2 19 2 20 2 21 2 22 2 23 2 24 2 25 2 26 2 27 2 28 2 29 2 30 2 31 2 32 2 33 2 34 2 35 2 36 2 37 2 38 2 39 2 40 2 41 2 42 2 43 2 44 2 45 2 46 2 47 2 48 2 49 2 50 2 51 4 52 4 53 4 54 4 55 4 56 4 57 4 58 4 59 4 60 4 61 4 62 4 63 4 64 4 65 4 66 4 67 4 68 4 69 1 70 4 71 4 72 4 73 1 74 4 75 4 76 4 77 4 78 4 79 4 80 4 81 4 82 4 83 4 84 1 85 4 86 4 87 4 88 4 89 4 90 4 91 4 92 4 93 4 94 4 95 4 96 4 97 4 98 4 99 4 100 4 101 1 102 1 103 1 104 1 105 1 106 1 107 1 108 1 109 1 110 1 111 1 112 1 113 1 114 1 115 1 116 1 117 1 118 1 119 1 120 1 121 1 122 1 123 1 124 1 125 1 126 1 127 1 128 1 129 1 130 1 131 1 132 1 133 1 134 1 135 1 136 1 137 1 138 1 139 1 140 1 141 1 142 1 143 1 144 1 145 1 146 1 147 1 148 1 149 1 150 1 |
主成份分析PCA的更多相关文章
- 吴裕雄 python 机器学习——主成份分析PCA降维
# -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt from sklearn import datas ...
- PCA主成份分析
1 背景介绍 真实的训练数据总是存在各种各样的问题: 1. 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余. 2. ...
- 【主成份分析】PCA推导
### 主成份分析(Pricipal components analysis PCA) 假设空间$R^{n}$中有m个点{$x^{1},......,x^{n}$},希望压缩,对每个$x^{i}$都有 ...
- principal components analysis 主成份分析
w http://deeplearning.stanford.edu/wiki/index.php/主成份分析 主成分分析(PCA)及其在R里的实现 - jicf的日志 - 网易博客 http:// ...
- pca主成份分析方法
1.应用pca的前提 应用pca的前提是,连续信号具有相关性.相关性是什么,是冗余.就是要利用pca去除冗余. 2.pca的定义 pca是一种去除随机变量间相关性的线性变换.是一种常用的多元数据分析方 ...
- Spark 2.0 PCA主成份分析
PCA在Spark2.0中用法比较简单,只需要设置: .setInputCol(“features”)//保证输入是特征值向量 .setOutputCol(“pcaFeatures”)//输出 .se ...
- PCA主成份分析学习记要
前言 主成份分析,简写为PCA(Principle Component Analysis).用于提取矩阵中的最主要成分,剔除冗余数据,同时降低数据纬度.现实世界中的数据可能是多种因数叠加的结果,如果这 ...
- PCA--主成份分析
主成份分析(Principle Component Analysis)主要用来对数据进行降维.对于高维数据,处理起来比较麻烦,而且高维数据可能含有相关的维度,数据存在冗余,PCA通过把高维数据向低维映 ...
- 主元分析PCA理论分析及应用
首先,必须说明的是,这篇文章是完完全全复制百度文库当中的一篇文章.本人之前对PCA比较好奇,在看到这篇文章之后发现其对PCA的描述非常详细,因此迫不及待要跟大家分享一下,希望同样对PCA比较困惑的朋友 ...
随机推荐
- poj1150
这道题告诉我们递推一定要慢慢细细的推Pmn=n!/m!,我们可以先考虑n!的最后一位是什么首先最后一位非0位我们首先想到把0都干掉也就是先把2和5提出来,这两个其实是同样的方法对于N!中有多少个因数2 ...
- What version of .NET Framework is integrated into what version of OS?
http://blogs.msdn.com/b/astebner/archive/2007/03/14/mailbag-what-version-of-the-net-framework-is-inc ...
- poj 3575 Crosses and Crosses(SG函数)
Crosses and Crosses Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 3063 Accepted: 11 ...
- AMBA总线介绍
The Advanced Microcontroller Bus Architecture (AMBA) specification defines an on- chip communication ...
- 002-python书写规范--消去提示波浪线
强迫症患者面对PyCharm的波浪线是很难受的,针对如下代码去除PyCharm中的波浪线: # _*_coding:utf-8_*_ # /usr/bin/env python3 A_user = & ...
- html5之canvas困惑 在canvas标签内需要设置了宽跟高,如果在css中设置同样的宽跟高,画出来的图像变形了?
<canvas class="cvs"></canvas> 遇到的问题: 如css 中设.cvs{width:500px;height:400px;},也就 ...
- SDUT2608(Alice and Bob)
题目描述 Alice and Bob like playing games very much.Today, they introduce a new game. There is a polynom ...
- 程序猿接私活经验总结,来自csdn论坛语录
下面为网上摘录,以做笔记: 但是到网上看看,似乎接私活也有非常多不easy,技术问题本身是个因素,还有非常多有技术的人接私活时被骗,或者是合作到最后以失败告终,所以想请有经验的大侠们出来指点一下,接私 ...
- android 19 activity纵横屏切换的数据保存与恢复
Bundle类:竖屏的activity换到横屏的activity的时候,会把竖屏的activity杀掉横屏的activity创建,竖屏的activity会有一些计算结果,可以用数据存起来,存到内存里面 ...
- iOS-UITouch,UIEvent使用介绍
UITouch 当用户用一根手指触摸屏幕时,会创建一个与手指相关联的UITouch对象 一根手指对应一个UITouch对象 UITouch的作用 保存着跟手指相关的信息,比如触摸的位置.时间.阶段 当 ...