网络流

关键是建图,思路在代码里

/*
最大流SAP
邻接表
思路:基本源于FF方法,给每个顶点设定层次标号,和允许弧。
优化:
1、当前弧优化(重要)。
1、每找到以条增广路回退到断点(常数优化)。
2、层次出现断层,无法得到新流(重要)。
时间复杂度(m*n^2)
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#define ms(a,b) memset(a,b,sizeof a)
using namespace std;
const int INF = ;
int G[INF][INF];
struct node {
int v, c, next;
} edge[INF*INF*];
int pHead[INF*INF], SS, ST, nCnt;
void addEdge (int u, int v, int c) {
edge[++nCnt].v = v; edge[nCnt].c = c, edge[nCnt].next = pHead[u]; pHead[u] = nCnt;
edge[++nCnt].v = u; edge[nCnt].c = , edge[nCnt].next = pHead[v]; pHead[v] = nCnt;
}
int SAP (int pStart, int pEnd, int N) {
int numh[INF], h[INF], curEdge[INF], pre[INF];
int cur_flow, flow_ans = , u, neck, i, tmp;
ms (h, ); ms (numh, ); ms (pre, -);
for (i = ; i <= N; i++) curEdge[i] = pHead[i];
numh[] = N;
u = pStart;
while (h[pStart] <= N) {
if (u == pEnd) {
cur_flow = 1e9;
for (i = pStart; i != pEnd; i = edge[curEdge[i]].v)
if (cur_flow > edge[curEdge[i]].c) neck = i, cur_flow = edge[curEdge[i]].c;
for (i = pStart; i != pEnd; i = edge[curEdge[i]].v) {
tmp = curEdge[i];
edge[tmp].c -= cur_flow, edge[tmp ^ ].c += cur_flow;
}
flow_ans += cur_flow;
u = neck;
}
for ( i = curEdge[u]; i != ; i = edge[i].next)
if (edge[i].c && h[u] == h[edge[i].v] + ) break;
if (i != ) {
curEdge[u] = i, pre[edge[i].v] = u;
u = edge[i].v;
}
else {
if ( == --numh[h[u]]) continue;
curEdge[u] = pHead[u];
for (tmp = N, i = pHead[u]; i != ; i = edge[i].next)
if (edge[i].c) tmp = min (tmp, h[edge[i].v]);
h[u] = tmp + ;
++numh[h[u]];
if (u != pStart) u = pre[u];
}
}
return flow_ans;
}
/*
poj1149 最大流
建图:
每个顾客为一个节点,从源点到每个猪圈的第一个顾客连接一条容量为猪圈猪数目的边
从第一个顾客到同一个猪圈的其它顾客连一条容量无限的边
每个顾客到汇点的边的容量为他最大买的数量 */
int k, c, m, n,x,y,z;
int vis[INF],sum[INF];
void solve(){
nCnt=;
for(int i=;i<=ST;i++)
for(int j=;j<=ST;j++){
if(G[i][j]) addEdge(i,j,G[i][j]);
}
int ans=SAP(SS,ST,ST);
printf("%d\n",ans);
}
int main() {
/*
先用邻接矩阵统计容量,再用前向星存边,表头在pHead[],初始化nCnt=1
SS,ST分别为源点和汇点
*/
scanf("%d %d",&m,&n);
SS=n+,ST=n+;
for(int i=;i<=m;i++)
scanf("%d",&sum[i]);
for(int i=;i<=n;i++){
scanf("%d",&k);
for(int j=;j<=k;j++){
scanf("%d",&x);
if(!vis[x]){
G[SS][i]+=sum[x];
vis[x]=i;
}
else{
G[vis[x]][i]=0xffff;
}
}
scanf("%d",&k);
G[i][ST]=k;
}
solve();
return ;
}

poj 1273.PIG (最大流)的更多相关文章

  1. POJ 1273 网络流(最大流)模板

    http://poj.org/problem?id=1273 这道题很值得反思,弄了一下午,交上去先是一直编译错误,而在本地运行没有问题, 原因可能是oj的编译器版本老旧不支持这样的写法 G[from ...

  2. Poj(1273),最大流,EK

    Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 69355   Accepted: 2687 ...

  3. POJ 1273 (基础最大流) Drainage Ditches

    虽然算法还没有理解透,但以及迫不及待地想要A道题了. 非常裸的最大流,试试lrj的模板练练手. #include <cstdio> #include <cstring> #in ...

  4. UVA 820 --- POJ 1273 最大流

    找了好久这两个的区别...UVA820 WA了 好多次.不过以后就做模板了,可以求任意两点之间的最大流. UVA 是无向图,因此可能有重边,POJ 1273是有向图,而且是单源点求最大流,因此改模板的 ...

  5. POJ 1273 Drainage Ditches(网络流dinic算法模板)

    POJ 1273给出M条边,N个点,求源点1到汇点N的最大流量. 本文主要就是附上dinic的模板,供以后参考. #include <iostream> #include <stdi ...

  6. poj 1273 最大流

    题目链接:http://poj.org/problem?id=1273 a.EK算法:(Edmond-Karp): 用BFS不断找增广路径,当找不到增广路径时当前流量即为最大流. b.dinic算法: ...

  7. poj 1273 Drainage Ditches 最大流入门题

    题目链接:http://poj.org/problem?id=1273 Every time it rains on Farmer John's fields, a pond forms over B ...

  8. poj 1273 Drainage Ditches(最大流)

    http://poj.org/problem?id=1273 Drainage Ditches Time Limit: 1000MS   Memory Limit: 10000K Total Subm ...

  9. POJ 1273 - Drainage Ditches - [最大流模板题] - [EK算法模板][Dinic算法模板 - 邻接表型]

    题目链接:http://poj.org/problem?id=1273 Time Limit: 1000MS Memory Limit: 10000K Description Every time i ...

随机推荐

  1. 传智播客C语言视频第二季(第一季基础上增加诸多C语言案例讲解,有效下载期为10.5-10.10关闭)

    卷 backup 的文件夹 PATH 列表卷序列号为 00000025 D4A8:14B0J:.│  1.txt│  c语言经典案例效果图示.doc│  ├─1传智播客_尹成_C语言从菜鸟到高手_第一 ...

  2. sql server 2008 创建新数据库报错、创建表报错、更改表的设计报错

    一:创建数据库报错如下: 二:解决,将软件以管理员身份运行 三:创建表报错如下图: 四:解决办法,在你创建的数据库下面的安全里,找到你创建的用户,属性,添加权限,红色标注,然后确定: 五:更改表的设计 ...

  3. URAL1079

    Problem E Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 32768/16384K (Java/Other) Total Sub ...

  4. HDU 4716 A Computer Graphics Problem 2013年四川省赛题

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4716 题目大意不用解释了吧,看案例就能明白 #include<cstdio> #inclu ...

  5. Front-End Engineer 技术栈

    自己根据各种招聘网站上的技术要求做的,希望自己能成为这样的人.

  6. Circle - SGU 130(递推)

    题目大意:一个圆上有2K个点,用K个线把他们连接起来,求出这些线最少可以把这个圆分成P部分,有N种分割方法.输出N和P. 分析:分割线一定是相互不相交的线,所以可以把这写分成两部分,f[i] += f ...

  7. An Easy Problem?! - POJ 2826(求面积)

    题目大意:有两块木板交叉起来接雨水,问最多能接多少.   分析:题目描述很简单,不过有些细节还是需要注意到,如下图几种情况:   #include<stdio.h> #include< ...

  8. Android四大组件之ContentProvider(二)读取设备上的图片、音频和视频

    Android系统提供了MediaScanner,MediaProvider,MediaStore等接口,通过Content Provider的方式提供给用户.当设备开机或者有SD卡插拔等事件发生时, ...

  9. UVa1151 Buy or Build

    填坑(p.358) 以前天真的以为用prim把n-1条边求出来就可以 现在看来是我想多了 #include<cstdio> #include<cstring> #include ...

  10. Docker的基本操作

    容器基本操作 1.启动容器 $docker run image [COMMAND] [ARG…] run在新容器中执行命令 2.启动交互式容器 $docker run -i -t IMAGE /bin ...