Intervals

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3332    Accepted Submission(s):
1227

Problem Description
You are given n closed, integer intervals [ai, bi] and
n integers c1, ..., cn.

Write a program that:

> reads the
number of intervals, their endpoints and integers c1, ..., cn from the standard
input,

> computes the minimal size of a set Z of integers which has at
least ci common elements with interval [ai, bi], for each i = 1, 2, ...,
n,

> writes the answer to the standard output

 
Input
The first line of the input contains an integer n (1
<= n <= 50 000) - the number of intervals. The following n lines describe
the intervals. The i+1-th line of the input contains three integers ai, bi and
ci separated by single spaces and such that 0 <= ai <= bi <= 50 000 and
1 <= ci <= bi - ai + 1.

Process to the end of file.

 
Output
The output contains exactly one integer equal to the
minimal size of set Z sharing at least ci elements with interval [ai, bi], for
each i = 1, 2, ..., n.
 
Sample Input
5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1
 
Sample Output
6
 
题意:给出n个区间的左右端点,和这个区间内至少存在的在集合s中的点的个数,让你求集合s中最少有多少个点
题解:重在找到差分约束的约束条件,将约束条件转化为xj-xi<=k的形式,然后建立一条从i到j权值为k的边;
设maxl为区间的左端点,maxr为区间的右端点,S[i] 表示集合Z里面的元素在区间[0, i ]的个数,Maxl,Maxr分别表示所有区间里面的最左端和最右端,dist[]数组存储源点到某点的最短路。则由题意得限制条件

一 S[right] -  S[left-1] >= least 即[left, right]区间个数不小于least,转换得S[left-1] - S[right] <= least;
二 0 <= S[i] - S[i-1] <= 1转换得 S[i-1] - S[i] <= 0 && S[i] - S[i-1] <= 1。
第二个条件题中并没有给出,需要自己推导,因为仅仅靠题中的条件无法构建一个连通图,也就无法求最短路,因为s[i]表示的是集合Z里面的元素在区间[0, i ]的个数所以s[i]至多比s[i-1]大一也可能相等
然后根据限制条件建图
转化问题:题目需要求的是S[Maxr] - S[Maxl-1] >= ans 即S[Maxl-1] - S[Maxr] <= -ans。 若以Maxr为源点 ,而-ans就为Maxr到Maxl-1的最短路径的相反数,即-dist[Maxl-1]。
 
#include<stdio.h>
#include<string.h>
#include<queue>
#define INF 0x3f3f3f
#define MAX 200000
#include<algorithm>
using namespace std;
int n,ans;
int maxl,maxr;
int vis[MAX],dis[MAX];
int head[MAX];
struct node
{
int u,v,w;
int next;
}edge[MAX];
void add(int u,int v,int w)
{
edge[ans].u=u;
edge[ans].v=v;
edge[ans].w=w;
edge[ans].next=head[u];
head[u]=ans++;
}
void init()
{
ans=0;
maxl=INF;
maxr=0;
memset(head,-1,sizeof(head));
}
void getmap()
{
int i,j,a,b,c;
while(n--)
{
scanf("%d%d%d",&a,&b,&c);
maxl=min(maxl,a);
maxr=max(maxr,b);
add(b,a-1,-c);
}
for(i=maxl;i<=maxr;i++)
{
add(i,i-1,0);
add(i-1,i,1);
}
}
void spfa()
{
int i,j;
queue<int>q;
memset(vis,0,sizeof(vis));
for(i=maxl-1;i<=maxr;i++)//以maxr为源点,也可以以maxl为源点,不过要对建图稍作修改
dis[i]=INF;
dis[maxr]=0;
vis[maxr]=1;
q.push(maxr);
while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=0;
for(i=head[u];i!=-1;i=edge[i].next)
{
int top=edge[i].v;
if(dis[top]>dis[u]+edge[i].w)
{
dis[top]=dis[u]+edge[i].w;
if(!vis[top])
{
vis[top]=1;
q.push(top);
}
}
}
}
printf("%d\n",-dis[maxl-1]);
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
init();
getmap();
spfa();
}
return 0;
}

  

 
 

hdoj 1384 Intervals的更多相关文章

  1. POJ 1384 Intervals (区间差分约束,根据不等式建图,然后跑spfa)

    传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1384 Intervals Time Limit: 10000/5000 MS (Java/Others ...

  2. hdu 1384 Intervals (差分约束)

    Intervals Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  3. HDU 1384 Intervals(差分约束)

    Intervals Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  4. POJ 1201 &amp;&amp; HDU 1384 Intervals(差动制动系统)

    职务地址:POJ 1201   HDU 1384 依据题目意思.能够列出不等式例如以下: Sj-Si>=c; Si-S(i-1)>=0; S(i-1)-Si>=-1; 然后用最短路s ...

  5. hdu 1384 Intervals (差分约束)

    Problem - 1384 好歹用了一天,也算是看懂了差分约束的原理,做出第一条查分约束了. 题意是告诉你一些区间中最少有多少元素,最少需要多少个元素才能满足所有要求. 构图的方法是,(a)-> ...

  6. HDOJ 1384 差分约束

    结题报告合集请戳:http://972169909-qq-com.iteye.com/blog/1185527 /*题意:求符合题意的最小集合的元素个数 题目要求的是求的最短路, 则对于 不等式 f( ...

  7. hdu 1384 Intervals

    差分约束系统. 求最小值,用最长路来解决. #include<cstdio> #include<cstring> #include<cmath> #include& ...

  8. HDU 1384 Intervals &洛谷[P1250]种树

    差分约束 差分约束的裸题,关键在于如何建图 我们可以把题目中给出的区间端点作为图上的点,此处应注意,由于区间中被标记的点的个数满足区间加法,这里与前缀和类似,对于区间[L..R]来说,我们加入一条从L ...

  9. HDU 1384 Intervals【差分约束-SPFA】

    类型:给出一些形如a−b<=k的不等式(或a−b>=k或a−b<k或a−b>k等),问是否有解[是否有负环]或求差的极值[最短/长路径].例子:b−a<=k1,c−b&l ...

随机推荐

  1. ios专题 - 多线程非GCD(1)

    iOS多线程初体验是本文要介绍的内容,iPhone中的线程应用并不是无节制的,官方给出的资料显示iPhone OS下的主线程的堆栈大小是1M,第二个线程开始都是512KB.并且该值不能通过编译器开关或 ...

  2. Eclipse不能自动编译 java文件,不会生成CLASS

    每次修改类代码后都得重启 Tomcat 花了1天终于解决,网上所说基本是下面1和2的方法,使用之后还是不行最后重新建工作环境导入项目对比了一下找到第三种方法 1.Project 下有个 "B ...

  3. js keycode大全

    JS KeyCode数字对应键盘以及应用大全   时间:2014-07-11 10:37    点击:851次 keycode    8 = BackSpace BackSpacekeycode    ...

  4. Codeforces 553C Love Triangles(图论)

    Solution: 比较好的图论的题. 要做这一题,首先要分析love关系和hate关系中,love关系具有传递性.更关键的一点,hate关系是不能成奇环的. 看到没有奇环很自然想到二分图的特性. 那 ...

  5. 【原创】Android 对话框的使用

    对话框即Dialog .google的官方解释:A dialog is usually a small window that appears in front of the current Acti ...

  6. 【原创】史上最全的Android开发环境搭建

    开始学习Android了 看着眼花缭乱的教程真心无奈...So  无耻的来了个大综合 自己充当了小白鼠.. (PS 若文章中链接失效 请留言反馈me会尽快修复) 开始的开始 java运行环境还是很必要 ...

  7. Android ART简介

    一.    Android ART简介 Android DEX/ODEX/OAT文件

  8. Lambda表达式, 可以让我们的代码更优雅.

    在C#中, 适当地使用Lambda表达式, 可以让我们的代码更优雅. 通过lambda表达式, 我们可以很方便地创建一个delegate: 下面两个语句是等价的 Code highlighting p ...

  9. sublime3快捷键汇总

    !+tab生成html结构文档选择类 Ctrl+D 选中光标所占的文本,继续操作则会选中下一个相同的文本.Alt+F3 选中文本按下快捷键,即可一次性选择全部的相同文本进行同时编辑.举个栗子: 快速选 ...

  10. 对Gearman中client,worker,jobserver的理解

    在gearman的官网http://gearman.org/有以下的一段说明 A Gearman powered application consists of three parts: a clie ...