poj 2960 S-Nim(SG函数)
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 3694 | Accepted: 1936 |
Description
- The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.
- The players take turns chosing a heap and removing a positive number of beads from it.
- The first player not able to make a move, loses.
Arthur and Caroll really enjoyed playing this simple game until they
recently learned an easy way to always be able to find the best move:
- Xor
the number of beads in the heaps in the current position (i.e. if we
have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1). - If the xor-sum is 0, too bad, you will lose.
- Otherwise, move such that the xor-sum becomes 0. This is always possible.
It is quite easy to convince oneself that this works. Consider these facts:
- The player that takes the last bead wins.
- After the winning player's last move the xor-sum will be 0.
- The xor-sum will change after every move.
Which
means that if you make sure that the xor-sum always is 0 when you have
made your move, your opponent will never be able to win, and, thus, you
will win.
Understandibly it is no fun to play a game when both players know
how to play perfectly (ignorance is bliss). Fourtunately, Arthur and
Caroll soon came up with a similar game, S-Nim, that seemed to solve
this problem. Each player is now only allowed to remove a number of
beads in some predefined set S, e.g. if we have S = {2, 5} each player
is only allowed to remove 2 or 5 beads. Now it is not always possible to
make the xor-sum 0 and, thus, the strategy above is useless. Or is it?
your job is to write a program that determines if a position of
S-Nim is a losing or a winning position. A position is a winning
position if there is at least one move to a losing position. A position
is a losing position if there are no moves to a losing position. This
means, as expected, that a position with no legal moves is a losing
position.
Input
For each test case: The first line contains a number k (0 < k ≤
100) describing the size of S, followed by k numbers si (0 < si ≤
10000) describing S. The second line contains a number m (0 < m ≤
100) describing the number of positions to evaluate. The next m lines
each contain a number l (0 < l ≤ 100) describing the number of heaps
and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the
heaps.
The last test case is followed by a 0 on a line of its own.
Output
each position: If the described position is a winning position print a
'W'.If the described position is a losing position print an 'L'.
Print a newline after each test case.
Sample Input
2 2 5
3
2 5 12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5
3
2 5 12
3 2 4 7
4 2 3 7 12
0
Sample Output
LWW
WWL
Source
【思路】
SG函数。
裸ti ,注意下sg和vis的大小就好了 :)
【代码】
#include<cstdio>
#include<cstring>
#define FOR(a,b,c) for(int a=(b);a<(c);a++)
using namespace std; int n,m,a[],sg[]; int dfs(int x) {
if(sg[x]!=-) return sg[x];
if(!x) return sg[x]=;
int vis[]; //size of [si]
memset(vis,,sizeof(vis));
FOR(i,,n)
if(x>=a[i]) vis[dfs(x-a[i])]=;
for(int i=;;i++)
if(!vis[i]) return sg[x]=i;
} int main() {
while(scanf("%d",&n)== && n) {
FOR(i,,n) scanf("%d",&a[i]);
scanf("%d",&m);
memset(sg,-,sizeof(sg));
FOR(i,,m) {
int x,v,ans=;
scanf("%d",&x);
FOR(j,,x)
scanf("%d",&v) , ans^=dfs(v);
if(ans) printf("W");
else printf("L");
}
putchar('\n');
}
return ;
}
poj 2960 S-Nim(SG函数)的更多相关文章
- POJ 2960 S-Nim 博弈论 sg函数
http://poj.org/problem?id=2960 sg函数几乎是模板题. 调试代码的最大障碍仍然是手残在循环里打错变量名,是时候换个hydra产的机械臂了[超想要.jpg] #includ ...
- HDU3544 Alice's Game && POJ 2960 S-Nim(SG函数)
题意: 有一块xi*Yi的矩形巧克力,Alice只允许垂直分割巧克力,Bob只允许水平分割巧克力.具体来说,对于Alice,一块巧克力X i * Y i,只能分解成a * Y i和b * Y i其中a ...
- poj 2960 S-Nim【SG函数】
预处理出SG函数,然后像普通nim一样做即可 #include<iostream> #include<cstdio> using namespace std; const in ...
- hdu 3032 Nim or not Nim? sg函数 难度:0
Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- 多校6 1003 HDU5795 A Simple Nim (sg函数)
思路:直接打表找sg函数的值,找规律,没有什么技巧 还想了很久的,把数当二进制看,再类讨二进制中1的个数是必胜或者必败状态.... 打表: // #pragma comment(linker, &qu ...
- S-Nim POJ - 2960 Nim + SG函数
Code: #include<cstdio> #include<algorithm> #include<string> #include<cstring> ...
- HDU 3032 Nim or not Nim (sg函数)
加强版的NIM游戏,多了一个操作,可以将一堆石子分成两堆非空的. 数据范围太大,打出sg表后找规律. # include <cstdio> # include <cstring> ...
- hdu 3032 Nim or not Nim? (SG函数博弈+打表找规律)
Nim or not Nim? Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Sub ...
- HDU 1729 Stone Game 石头游戏 (Nim, sg函数)
题意: 有n个盒子,每个盒子可以放一定量的石头,盒子中可能已经有了部分石头.假设石头无限,每次可以往任意一个盒子中放石头,可以加的数量不得超过该盒中已有石头数量的平方k^2,即至少放1个,至多放k^2 ...
随机推荐
- DNS(域名系统)域名解析设置
DNS(Domain Name System,域名系统), 因特网上作为域名和IP地址相互映射的一个分布式数据库,能够使用户更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串.通过主机名,最 ...
- 一个自定义线程池的小Demo
在项目中如果是web请求时候,IIS会自动分配一个线程来进行处理,如果很多个应用程序共享公用一个IIS的时候,线程分配可能会出现一个问题(当然也是我的需求造成的) 之前在做项目的时候,有一个需求,就是 ...
- 在CentOS6.0上安装Oracle 11gR2 (11.2.0.1)以及基本的配置(一)
首先安装CentOS6.0 就不用说了.安装即可.唯一需要注意的就是后面Oracle 11G Installation guide中的Checking the Software Requireme ...
- GitHub中"watch" "star" "fork"三个按钮干什么用的?
总结下一般使用:1.想拷贝别人项目到自己帐号下就fork一下.2.持续关注别人项目更新就star一下3.watch是设置接收邮件提醒的.具体提醒有Issues and their commentsPu ...
- c#数组的交集,差集,并集
, , , , }; , , , , }; // 差集 var z1 = x.Except(y); foreach (var i in z1) { Console.Write(i + " & ...
- POJ 1564(HDU 1258 ZOJ 1711) Sum It Up(DFS)
题目链接:http://poj.org/problem?id=1564 题目大意:给定一个整数t,和n个元素组成的集合.求能否用该集合中的元素和表示该整数,如果可以输出所有可行解.1<=n< ...
- LuaNode 开源库
受CJSON库的启发,用C++实现解析Lua文件的库. 整个库大概800行代码,因为新鲜出炉,所以有些潜在问题尚未发现. 截图中包含使用例子. 以下接口清单: LuaNode(); LuaNode(c ...
- thinkphp关联查询(多表查询)
1.Table方法:定义要操作的数据表名称,可以动态改变当前操作的数据表名称,需要写数据表的全名,包含前缀,可以使用别名, 例如: $Model->Table('think_user user' ...
- python 计算apache进程占用的内存大小以及占物理内存的比例
目的:计算所有apache进程占用的内存大小以及占物理内存的比例: 思路:利用系统中/proc/meminfo的现有数据进行统计 1.pidof列出服务对应进程的PID [root@yanglih ...
- 配置Struts2的异常处理
最好的方式是通过声明管理异常处理 1Action里面的execute()方法抛出所有异常:public String execute() throws Exception{} 2声明异常捕捉 ...