【USACO 3.2.5】魔板
【描述】
在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板。这是一张有8个大小相同的格子的魔板:
1 2 3 4
8 7 6 5
我们知道魔板的每一个方格都有一种颜色。这8种颜色用前8个正整数来表示。可以用颜色的序列来表示一种魔板状态,规定从魔板的左上角开始,沿顺时针方向依次取出整数,构成一个颜色序列。对于上图的魔板状态,我们用序列(1,2,3,4,5,6,7,8)来表示。这是基本状态。
这里提供三种基本操作,分别用大写字母“A”,“B”,“C”来表示(可以通过这些操作改变魔板的状态):
“A”:交换上下两行;
“B”:将最右边的一列插入最左边;
“C”:魔板中央四格作顺时针旋转。
下面是对基本状态进行操作的示范:
A: 8 7 6 5
1 2 3 4
B: 4 1 2 3
5 8 7 6
C: 1 7 2 4
8 6 3 5
对于每种可能的状态,这三种基本操作都可以使用。
你要编程计算用最少的基本操作完成基本状态到目标状态的转换,输出基本操作序列。
【格式】
PROGRAM NAME: msquare
INPUT FORMAT:
(file msquare.in)
只有一行,包括8个整数,用空格分开(这些整数在范围 1——8 之间)不换行,表示目标状态。
OUTPUT FORMAT:
(file msquare.out)
Line 1: 包括一个整数,表示最短操作序列的长度。
Line 2: 在字典序中最早出现的操作序列,用字符串表示,除最后一行外,每行输出60个字符。
【分析】
直接广搜就行了,然后用哈希判重。
#include <cstdlib>
#include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#include <queue>
#include <vector>
using namespace std;
struct state
{
int data[][];
int step,parent;//步数
int kind;//表示该状态经过哪一种变换得来
}begin,end;//ren用来记录标号
bool hash[*];
int sqr[];
unsigned int point=,p=;//rem指针
vector<state>Q; void bfs();
bool check(state a,state b);
void init();//初始化
void change(state &t,int type);
void print(int t);//打印
int h(state t);//哈希函数 int main()
{
//文件操作
freopen("msquare.in","r",stdin);
freopen("msquare.out","w",stdout);
//读入与初始化
for (int i=;i<=;i++) {scanf("%d",&end.data[][i]);begin.data[][i]=i;}
for (int j=;j>=;j--) {scanf("%d",&end.data[][j]);begin.data[][j]=-j+;}
if (check(begin,end)) {printf("");return ;}
bfs(); int temp=Q.size()-;
printf("%d\n",Q[temp].step);
print(temp);
return ;
}
void init()
{
memset(hash,,sizeof(hash));
sqr[]=;
for (int i=;i<=;i++) sqr[i]=sqr[i-]*;
begin.step=;
begin.parent=-;
}
void bfs()
{
Q.push_back(begin);
init();
while (point<Q.size())
{
state u=Q[point];
state temp=u;//记录 for (int i=;i<=;i++)
{
change(u,i);
if (hash[h(u)]==)//没有加入过
{
Q.push_back(u);
hash[h(u)]=;
if (check(u,end)) return;
}u=temp;//还原
}
point++;
}
}
bool check(state a,state b)//比较函数
{
for (int i=;i<=;i++)
for (int j=;j<=;j++) if (a.data[i][j]!=b.data[i][j]) return ;
return ;
}
void change(state &t,int type)
{
state temp=t;
//初始化
temp.step++;
temp.parent=point;
temp.kind=type;
if (type==) for (int i=;i<=;i++) swap(temp.data[][i],temp.data[][i]);
else if (type==)
{
temp.data[][]=t.data[][];
temp.data[][]=t.data[][];
for (int i=;i<=;i++)
{
temp.data[][i]=t.data[][i-];
temp.data[][i]=t.data[][i-];
}
}
else if (type==)
{
temp.data[][]=t.data[][];
temp.data[][]=t.data[][];
temp.data[][]=t.data[][];
temp.data[][]=t.data[][];
}
t=temp;
}
void print(int t)
{
if (!t) return;
print(Q[t].parent);
printf("%c",char(Q[t].kind-+'A'));
++p;
if (p==) {printf("\n");p=;}//换行
}
int h(state t)
{
int i,j,ans=;
for (i=;i<=;i++)
for (j=;j<=;j++) ans+=t.data[i][j]*sqr[i*+j-];
return ans;
}
【USACO 3.2.5】魔板的更多相关文章
- 【CJOJ1372】【洛谷2730】【USACO 3.2.5】魔板
题面 Description 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 我们知道魔板的每一个方格都有一种颜色 ...
- [hash-bfs]USACO 3.2 Magic Squares 魔板
魔 板 魔板 魔板 题目描述 在成功地发明了魔方之后,拉比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 我们知道魔板的每一个方格都有一种颜色 ...
- 洛谷P2730 魔板 [广搜,字符串,STL]
题目传送门 魔板 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有 ...
- P2730 魔板 Magic Squares
题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有一种颜色.这8种颜 ...
- [洛谷P2730] 魔板 Magic Squares
洛谷题目链接:魔板 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都 ...
- 洛谷 P2730 魔板 Magic Squares
P2730 魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 ...
- 洛谷P2730 [IOI]魔板 Magic Squares
题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题目描述 我们知道魔板的每一个方格都有一种颜色.这8种颜 ...
- [USACO3.2]魔板 Magic Squares
松下问童子,言师采药去. 只在此山中,云深不知处.--贾岛 题目:魔板 Magic Squares 网址:https://www.luogu.com.cn/problem/P2730 这是一张有8个大 ...
- 「一本通 1.4 例 2」[USACO3.2]魔板 Magic Squares
[USACO3.2]魔板 Magic Squares 题目背景 在成功地发明了魔方之后,鲁比克先生发明了它的二维版本,称作魔板.这是一张有8个大小相同的格子的魔板: 1 2 3 4 8 7 6 5 题 ...
随机推荐
- java学习进制转换之查表法
10进制转16进制,以及10进制转2进制,还有10进制转8进制,这些转换如果按照常规思路的话,会灰常的麻烦. 我们来看一下 10进制转16进制: 假如这里有一个十进制数字:35,我们的需求就是把这个3 ...
- bzoj2561
对于新加入的边,必须要既可能在最小生成树上也可能在最大生成树上我们先对于最小生成树考虑根据kruskal的理论,不难发现,u--v 长度为L的边可能出现在最小生成树上就是说删边剩下的比L小的边一定不能 ...
- Oracle存储过程 --3
Oracle存储过程包含三部分:过程声明,执行过程部分,存储过程异常. Oracle存储过程可以有无参数存储过程和带参数存储过程. 一.无参程序过程语法 1 create or replace pro ...
- -_-#【jQuery插件】textSlider 文本滚动
jQuery.textSlider.js ;(function($) { $.fn.textSlider = function(settings) { settings = jQuery.extend ...
- [经典] 在未排序数组中返回topK大的数
解法一,排序 先从大到小快排,然后扫前K个返回 时间复杂度:O(NlogN),空间复杂度O(1) 解法二,优先队列 前K个放入优先队列中,与最小堆顶元素比较大小,若大于则删除堆顶并插入:否则跳过 时间 ...
- SRM 401(1-250pt, 1-500pt)
DIV1 250pt 题意:给一个整数f,则这样的正整数整数数列称为好数列:数列元素a0 >= a1 >= a2...,且a0<= f, a1 <= f-1, a2 <= ...
- ssh日志记录
上天查看了服务器安全日志,防火墙屏蔽了处理了一些暴力破解ssh密码的ip(其中一个ip地址为北京一家有名的CDN服务提供商),然后删除了所有的/var/log/secure* 日志文件.今天再来查看日 ...
- 从git上下载代码并导入eclipse
主要分为两步: 1.先从git下载代码到本地git仓库 2.eclipse import导入存在的maven项目
- Necklace of Beads
http://poj.org/problem?id=1286 // File Name: poj1286.cpp // Author: bo_jwolf // Created Time: 2013年1 ...
- 实战:sqlserver 数据实时同步到mysql
1.安装安装mysqlconnector 2.配置mysqlconnector ODBC数据管理器->系统DSN->加入->mysql ODBC 5.3 ANSI driver-&g ...