dsy1911: [Apio2010]特别行动队

【题目描述】

有n个数,分成连续的若干段,每段的分数为a*x^2+b*x+c(a,b,c是给出的常数),其中x为该段的各个数的和。求如何分才能使得各个段的分数的总和最大。

【输入格式】 

第1行:1个整数N (1 <= N <= 1000000)。

第2行:3个整数a,b,c(-5<=a<=-1,|b|<=10000000,|c|<=10000000

下来N个整数,每个数的范围为[1,100]。

【输出格式】 

    一个整数,各段分数总和的值最大。

【分析】

  设s[i]为i的前缀和。

  dp方程: f[i]=f[j]+a*(s[i]-s[j])^2+b(s[i]-s[j])+c

  即 f[i]=-2a*s[i]*s[j]+a*s[j]^2-b*s[j]+f[j]+a*s[i]^2+b*s[i]+c

  化成斜率优化标准形式,维护一个右上凸包即可。

代码如下:

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
#define Maxn 1000010
#define LL long long LL w[Maxn],s[Maxn];
LL a,b,c; struct node
{
LL x,y;
}t[Maxn];int len=; LL f[Maxn]; bool check(int x,int y,int k)
{
LL kk=k;
return kk*(t[y].x-t[x].x)<=(t[y].y-t[x].y);
} bool check2(int x,int y,int z)
{
return (t[z].x-t[y].x)*(t[y].y-t[x].y)<=(t[y].x-t[x].x)*(t[z].y-t[y].y);
} int main()
{
int n;
scanf("%d",&n);
scanf("%lld%lld%lld",&a,&b,&c);
s[]=;
for(int i=;i<=n;i++)
{
scanf("%lld",&w[i]);
s[i]=s[i-]+w[i];
}
int st;
t[++len].x=;t[len].y=;st=;
for(int i=;i<=n;i++)
{
while(st<len&&check(st,st+,*a*s[i])) st++;
f[i]=-*a*s[i]*t[st].x+t[st].y+a*s[i]*s[i]+b*s[i]+c;
t[].x=s[i];t[].y=a*s[i]*s[i]-b*s[i]+f[i];
while(st<len&&check2(len-,len,)) len--;
t[++len]=t[];
}
printf("%lld\n",f[n]);
return ;
}

[BZOJ 1911]

2016-09-19 20:45:07

【BZOJ 1191】 [Apio2010]特别行动队 (斜率优化)的更多相关文章

  1. BZOJ 1911: [Apio2010]特别行动队 [斜率优化DP]

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 4142  Solved: 1964[Submit][Statu ...

  2. bzoj 1911: [Apio2010]特别行动队 -- 斜率优化

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MB Description Input Output Sample Input 4 ...

  3. [APIO2010]特别行动队 --- 斜率优化DP

    [APIO2010]特别行动队 题面很直白,就不放了. 太套路了,做起来没点感觉了. \(dp(i)=dp(j)+a*(s(i)-s(j))^{2}+b*(s(i)-s(j))+c\) 直接推出一个斜 ...

  4. bzoj1911[Apio2010]特别行动队 斜率优化dp

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 5057  Solved: 2492[Submit][Statu ...

  5. APIO2010 特别行动队 & 斜率优化DP算法笔记

    做完此题之后 自己应该算是真正理解了斜率优化DP 根据状态转移方程$f[i]=max(f[j]+ax^2+bx+c),x=sum[i]-sum[j]$ 可以变形为 $f[i]=max((a*sum[j ...

  6. bzoj1911 [Apio2010]特别行动队——斜率优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1911 相当明显的斜率优化,很好做: 注意slp里面要有(double),以免出现精度问题. ...

  7. [Bzoj1911][Apio2010]特别行动队(斜率优化)

    题目链接 斜率优化的经典模型,将序列分成若干段,每段有一个权值计算方法,求权值和最大/小 暴力的dp $O(n^{2})$ dp[i]为1-i的序列的最优解.sum[i]为前缀和,$D(i)=ax^{ ...

  8. 【BZOJ1911】[Apio2010]特别行动队 斜率优化DP

    想了好久啊....——黑字为第一次更新.——这里是第二次更新,维护上下凸包据题而论,第一种方法是化式子的方法,需要好的化式子的方法,第二种是偏向几何,十分好想,纯正的维护凸包的方法,推荐. 用了我感觉 ...

  9. 洛谷P3628 [APIO2010]特别行动队 斜率优化

    裸题,注意队列下标不要写错 Code: #include<cstdio> #include<algorithm> #include<cmath> using nam ...

  10. bzoj 1911 [Apio2010]特别行动队(斜率优化+DP)

    1911: [Apio2010]特别行动队 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 3191  Solved: 1450[Submit][Statu ...

随机推荐

  1. Import user's Environment path into Linux cron task

    How to use "cron" to create scheduled task Minimum time cycle: 1 minute Use crontab -e edi ...

  2. 幻灯片の纯CSS,NO JavaScript

    之前就遇到有人问,不用js,纯css实现幻灯片. 那么对于使用纯的css + html 怎样来实现幻灯片呢?下面有几种方法可供参考,有些还不成熟. 方案一:利用css3的animation 例子传送门 ...

  3. 重温css系列01

    2016-01-07——解决背景层透明度的问题 需要ie9+ 问题:如果我对div设置opacity: 0.8;这个透明属性后 希望内容不发生改变怎么弄? A:做两层,或者rgba 解决后的效果图: ...

  4. JS实现rgb与16进制颜色相互转换

    1.rgb转16进制 function to16 (a) {//RGB(204,204,024) //十六进制颜色值的正则表达式 var reg = /^#([0-9a-fA-f]{3}|[0-9a- ...

  5. Lucene/Solr开发经验

    1.开篇语2.概述3.渊源4.初识Solr5.Solr的安装6.Solr分词顺序7.Solr中文应用的一个实例8.Solr的检索运算符 [开篇语]按照惯例应该写一篇技术文章了,这次结合Lucene/S ...

  6. 第17条:实现description方法

    自定义类需要自己覆写description方法,否则打印信息时就会调用NSObject类所实现的默认方法.(如果不覆写,只会输出类名和对象的内存地址的信息,这只有在判断两个指针是否指向同一对象时才有用 ...

  7. xcode 最近打开文件列表显示为空或不显示最近打开的项目或(no recent projects)解决办法

    如果使用的是10.10 系统,打开系统设置-->进入通用-->在最下面的"最近使用的项目"中将0改为你可以接受的选项 如果不是10.10,那么就从系统偏好设置---&g ...

  8. 07_MyBatis原始的Dao编写方法

    [UserDao.java ] package com.Higgin.Mybatis.dao; import com.Higgin.Mybatis.po.User; public interface ...

  9. STL:remove和erase区别

    C++ STL中的remove和erase函数曾经让我迷惑,同样都是删除,两者有什么区别呢? vector中的remove的作用是将等于value的元素放到vector的尾部,但并不减少vector的 ...

  10. windows下使用xampp一键安装apache+php运行环境

    感谢浏览,欢迎交流=.= 想为我老爸开发一套库存管理系统,借此机会打算使用下ext+php+apache+linux环境尝尝鲜. 为了在windows搭建本地开发测试环境,官网下载xampp,一键安装 ...