Day12(补充) Python操作MySQL
本篇对于Python操作MySQL主要使用两种方式:
- 原生模块 pymsql
- ORM框架 SQLAchemy
pymsql
pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb几乎相同。
下载安装
1
|
pip3 install pymysql |
使用操作
1、执行SQL
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql # 创建连接
conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
# 创建游标
cursor = conn.cursor() # 执行SQL,并返回收影响行数
effect_row = cursor.execute("update hosts set host = '1.1.1.2'") # 执行SQL,并返回受影响行数
#effect_row = cursor.execute("update hosts set host = '1.1.1.2' where nid > %s", (1,)) # 执行SQL,并返回受影响行数
#effect_row = cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)]) # 提交,不然无法保存新建或者修改的数据
conn.commit() # 关闭游标
cursor.close()
# 关闭连接
conn.close()
2、获取新创建数据自增ID
#!/usr/bin/env python # -*- coding:utf-8 -*-
import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
cursor = conn.cursor()
cursor.executemany("insert into hosts(host,color_id)values(%s,%s)", [("1.1.1.11",1),("1.1.1.11",2)])
conn.commit()
cursor.close()
conn.close() # 获取最新自增ID
new_id = cursor.lastrowid
3、获取查询数据
#!/usr/bin/env python # -*- coding:utf-8 -*-
import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1')
cursor = conn.cursor()
cursor.execute("select * from hosts") # 获取第一行数据
row_1 = cursor.fetchone() # 获取前n行数据
# row_2 = cursor.fetchmany(3)
# 获取所有数据
# row_3 = cursor.fetchall() conn.commit()
cursor.close()
conn.close()
注:在fetch数据时按照顺序进行,可以使用cursor.scroll(num,mode)来移动游标位置,如:
- cursor.scroll(1,mode='relative') # 相对当前位置移动
- cursor.scroll(2,mode='absolute') # 相对绝对位置移动
4、fetch数据类型
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import pymysql conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='123', db='t1') # 游标设置为字典类型
cursor = conn.cursor(cursor=pymysql.cursors.DictCursor)
r = cursor.execute("call p1()") result = cursor.fetchone() conn.commit()
cursor.close()
conn.close()
SQLAchemy
SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果。
安装:
1
|
pip3 install SQLAlchemy |
MySQL-Python
mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> pymysql
mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>] MySQL-Connector
mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> cx_Oracle
oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...] 更多详见:http://docs.sqlalchemy.org/en/latest/dialects/index.html
一、内部处理
使用 Engine/ConnectionPooling/Dialect 进行数据库操作,Engine使用ConnectionPooling连接数据库,然后再通过Dialect执行SQL语句。
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) # 执行SQL
# cur = engine.execute(
# "INSERT INTO hosts (host, color_id) VALUES ('1.1.1.22', 3)"
# ) # 新插入行自增ID
# cur.lastrowid # 执行SQL
# cur = engine.execute(
# "INSERT INTO hosts (host, color_id) VALUES(%s, %s)",[('1.1.1.22', 3),('1.1.1.221', 3),]
# ) # 执行SQL
# cur = engine.execute(
# "INSERT INTO hosts (host, color_id) VALUES (%(host)s, %(color_id)s)",
# host='1.1.1.99', color_id=3
# ) # 执行SQL
# cur = engine.execute('select * from hosts')
# 获取第一行数据
# cur.fetchone()
# 获取第n行数据
# cur.fetchmany(3)
# 获取所有数据
# cur.fetchall()
二、ORM功能使用
使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有组件对数据进行操作。根据类创建对象,对象转换成SQL,执行SQL。
1、创建表
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) Base = declarative_base() # 创建单表
class Users(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String(32))
extra = Column(String(16)) __table_args__ = (
UniqueConstraint('id', 'name', name='uix_id_name'),
Index('ix_id_name', 'name', 'extra'),
) # 一对多
class Favor(Base):
__tablename__ = 'favor'
nid = Column(Integer, primary_key=True)
caption = Column(String(50), default='red', unique=True) class Person(Base):
__tablename__ = 'person'
nid = Column(Integer, primary_key=True)
name = Column(String(32), index=True, nullable=True)
favor_id = Column(Integer, ForeignKey("favor.nid")) # 多对多
class Group(Base):
__tablename__ = 'group'
id = Column(Integer, primary_key=True)
name = Column(String(64), unique=True, nullable=False)
port = Column(Integer, default=22) class Server(Base):
__tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True)
hostname = Column(String(64), unique=True, nullable=False) class ServerToGroup(Base):
__tablename__ = 'servertogroup'
nid = Column(Integer, primary_key=True, autoincrement=True)
server_id = Column(Integer, ForeignKey('server.id'))
group_id = Column(Integer, ForeignKey('group.id')) def init_db():
Base.metadata.create_all(engine) def drop_db():
Base.metadata.drop_all(engine)
注:设置外检的另一种方式 ForeignKeyConstraint(['other_id'], ['othertable.other_id'])
2、操作表
表结构 + 数据库连接
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5) Base = declarative_base() # 创建单表
class Users(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String(32))
extra = Column(String(16)) __table_args__ = (
UniqueConstraint('id', 'name', name='uix_id_name'),
Index('ix_id_name', 'name', 'extra'),
) def __repr__(self):
return "%s-%s" %(self.id, self.name) # 一对多
class Favor(Base):
__tablename__ = 'favor'
nid = Column(Integer, primary_key=True)
caption = Column(String(50), default='red', unique=True) def __repr__(self):
return "%s-%s" %(self.nid, self.caption) class Person(Base):
__tablename__ = 'person'
nid = Column(Integer, primary_key=True)
name = Column(String(32), index=True, nullable=True)
favor_id = Column(Integer, ForeignKey("favor.nid"))
# 与生成表结构无关,仅用于查询方便
favor = relationship("Favor", backref='pers') # 多对多
class ServerToGroup(Base):
__tablename__ = 'servertogroup'
nid = Column(Integer, primary_key=True, autoincrement=True)
server_id = Column(Integer, ForeignKey('server.id'))
group_id = Column(Integer, ForeignKey('group.id'))
group = relationship("Group", backref='s2g')
server = relationship("Server", backref='s2g') class Group(Base):
__tablename__ = 'group'
id = Column(Integer, primary_key=True)
name = Column(String(64), unique=True, nullable=False)
port = Column(Integer, default=22)
# group = relationship('Group',secondary=ServerToGroup,backref='host_list') class Server(Base):
__tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True)
hostname = Column(String(64), unique=True, nullable=False) def init_db():
Base.metadata.create_all(engine) def drop_db():
Base.metadata.drop_all(engine) Session = sessionmaker(bind=engine)
session = Session()
增
obj = Users(name="alex0", extra='sb')
session.add(obj)
session.add_all([
Users(name="alex1", extra='sb'),
Users(name="alex2", extra='sb'),
])
session.commit()
删
session.query(Users).filter(Users.id > 2).delete()
session.commit()
改
session.query(Users).filter(Users.id > 2).update({"name" : "099"})
session.query(Users).filter(Users.id > 2).update({Users.name: Users.name + "099"}, synchronize_session=False)
session.query(Users).filter(Users.id > 2).update({"num": Users.num + 1}, synchronize_session="evaluate")
session.commit()
查
ret = session.query(Users).all()
ret = session.query(Users.name, Users.extra).all()
ret = session.query(Users).filter_by(name='alex').all()
ret = session.query(Users).filter_by(name='alex').first()
其他
# 条件
ret = session.query(Users).filter_by(name='alex').all()
ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all()
ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all()
ret = session.query(Users).filter(Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all()
from sqlalchemy import and_, or_
ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all()
ret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all()
ret = session.query(Users).filter(
or_(
Users.id < 2,
and_(Users.name == 'eric', Users.id > 3),
Users.extra != ""
)).all() # 通配符
ret = session.query(Users).filter(Users.name.like('e%')).all()
ret = session.query(Users).filter(~Users.name.like('e%')).all() # 限制
ret = session.query(Users)[1:2] # 排序
ret = session.query(Users).order_by(Users.name.desc()).all()
ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all() # 分组
from sqlalchemy.sql import func ret = session.query(Users).group_by(Users.extra).all()
ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).all() ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all() # 连表 ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all() ret = session.query(Person).join(Favor).all() ret = session.query(Person).join(Favor, isouter=True).all() # 组合
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union(q2).all() q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union_all(q2).all()
Day12(补充) Python操作MySQL的更多相关文章
- 多表查询思路、navicat可视化软件、python操作MySQL、SQL注入问题以及其他补充知识
昨日内容回顾 外键字段 # 就是用来建立表与表之间的关系的字段 表关系判断 # 一对一 # 一对多 # 多对多 """通过换位思考判断""" ...
- python操作MySQL与MySQL补充
目录 python操作MySQL 基本使用 SQL注入问题 二次确认 视图 触发器 事务 存储过程 函数 流程控制 索引 练习 python操作MySQL python中支持操作MySQL的模块很多, ...
- python 操作 mysql基础补充
前言 本篇的主要内容为整理mysql的基础内容,分享的同时方便日后查阅,同时结合python的学习整理python操作mysql的方法以及python的ORM. 一.数据库初探 在开始mysql之前先 ...
- python操作MySQL,SQL注入的问题,SQL语句补充,视图触发器存储过程,事务,流程控制,函数
python操作MySQL 使用过程: 引用API模块 获取与数据库的连接 执行sql语句与存储过程 关闭数据库连接 由于能操作MySQL的模块是第三方模块,我们需要pip安装. pip3 insta ...
- Python操作Mysql之基本操作
pymysql python操作mysql依赖pymysql这个模块 下载安装 pip3 install pymysql 操作mysql python操作mysql的时候,是通过”游标”来进行操作的. ...
- 使用python操作mysql数据库
这是我之前使用mysql时用到的一些库及开发的工具,这里记录下,也方便我查阅. python版本: 2.7.13 mysql版本: 5.5.36 几个python库 1.mysql-connector ...
- 【Python】使用python操作mysql数据库
这是我之前使用mysql时用到的一些库及开发的工具,这里记录下,也方便我查阅. python版本: 2.7.13 mysql版本: 5.5.36 几个python库 1.mysql-connector ...
- 【Python之路】第十九篇--Python操作MySQL
本篇对于Python操作MySQL主要使用两种方式: 原生模块 pymsql ORM框架 SQLAchemy pymsql pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb ...
- Python操作MySQL:pymysql和SQLAlchemy
本篇对于Python操作MySQL主要使用两种方式: 原生模块 pymsql ORM框架 SQLAchemy pymsql pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb ...
随机推荐
- Node.js学习(12)----Web应用开发
1.使用http模块 Node.js 由于不需要另外的 HTTP 服务器,因此减少了一层抽象,给性能带来不少提升, 但同时也因此而提高了开发难度.举例来说,我们要实现一个 POST 数据的表单,例如: ...
- linux上安装rar解压软件
描述:Linux默认自带ZIP压缩,最大支持4GB压缩,RAR的压缩比大于4GB. -------------------------------------------------- 下载 # wg ...
- UVaLive4043 UVa1411 Ants 巨人与鬼
题意:给出平面上n个白点n个黑点,要求两两配对,且配对所连线段没有交点. 法一:暴力 随机一个初始方案,枚举任意两条线段如果有交点就改一下. 效率其实挺好的. 法二:二分图最佳完美匹配 显然没有交点的 ...
- history对象back()、forward()、go()
history对象back().forward().go()方法history.back() 功能:加载历史列表中的前一个URL(后退). 语法:history.back() 调用该方法的效果等价于点 ...
- zedboard--交叉编译Opencv库的生成 分类: shell ubuntu fool_tree的笔记本 ZedBoard OpenCV 2014-11-08 18:57 171人阅读 评论(0) 收藏
Opencv的移植,xzyfeixiang和rainysky的博客. 第一步肯定是下载opencv的源码包 第二步已经做好的交叉编译环境. 第三步下载安装cmake apt-get install ...
- Present ViewController Modally
一.主要用途 弹出模态ViewController是IOS变成中很有用的一个技术,UIKit提供的一些专门用于模态显示的ViewController,如UIImagePickerController等 ...
- [PWA] Enable Push Notification in your web app
1. Clone the project: git clone https://github.com/GoogleChrome/push-notifications.git 2. install th ...
- 亲测linux上安装mysql
1.rpm -ivh MySQL-server-5.6.19-linux_glibc2.5.x86_64.rpm(这是复制过来的,用Tab键自动补齐吧)2.rpm -ivh MySQL-client- ...
- Java序列化之Serializable
Java的序列化流程如下: Java的反序列化流程如下: 注意:并不是所有类都需要进行序列化,主要原因有两个 1)安全问题.Java中有的类属于敏感类,此类的对象数据不便对外公开,而序列化的对象数据很 ...
- Android群英传》读书笔记 (4) 第八章 Activity和Activity调用栈分析 + 第九章 系统信息与安全机制 + 第十章 性能优化
第八章 Activity和Activity调用栈分析 1.Activity生命周期理解生命周期就是两张图:第一张图是回字型的生命周期图第二张图是金字塔型的生命周期图 注意点(1)从stopped状态重 ...