Time Limit: 2000MS   Memory Limit: 32768K
Total Submissions: 20754   Accepted: 10872

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con. 

An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6. 

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.

 #include<stdio.h>
#include<string.h>
#include<queue>
using namespace std; const int MAX = ;
const int INF = 0x3f3f3f3f;
int n,np,nc,m,mf,s,t;
int cap[MAX][MAX],flow[MAX][MAX],a[MAX];
int pre[MAX];
char str[];
queue <int> que;
void maxflow()
{
memset(flow,,sizeof(flow));//初始化,所有的边的流量初始为0;
mf = ;//记录最大流
for(;;)
{
memset(a,,sizeof(a));//s到每个节点路径上的最小残量
a[s] = INF;
que.push(s);
//bfs找增广路
while(!que.empty())
{
int u = que.front();
que.pop();
for(int v = ; v <= n+; v++)
{
if(!a[v] && cap[u][v] > flow[u][v])//找到新的节点v
{
pre[v] = u;//记录前驱并加入队列
que.push(v);
if(a[u] < cap[u][v]-flow[u][v])
a[v] = a[u];
else a[v] = cap[u][v]-flow[u][v];//s到v路径上的最小残量
}
}
}
if(a[t] == ) break;//找不到最小残量,当前流已经是最大流;
for(int u = t; u!= s;u = pre[u])//从汇点往回走
{
flow[pre[u]][u] += a[t];//更新正向流量
flow[u][pre[u]] -= a[t];//更新反向流量
}
mf += a[t];//更新从s流出的总流量
}
} int main()
{
int u,v,z;
while(~scanf("%d %d %d %d",&n,&np,&nc,&m))
{
memset(cap,,sizeof(cap));
while(m--)
{
scanf("%s",str);
sscanf(str,"(%d,%d)%d",&u,&v,&z);
cap[u][v] = z;
} while(np--)//有多个起点
{
scanf("%s",str);
sscanf(str,"(%d)%d",&v,&z);
cap[n][v] = z;//将多个起点连接到一个新的顶点作为起点;
} while(nc--)//有多个终点
{
scanf("%s",str);
sscanf(str,"(%d)%d",&u,&z);
cap[u][n+] = z;//将多个终点连接到一个新的终点作为终点;
}
s = n;
t = n+;
maxflow();
printf("%d\n",mf);
}
return ;
}

Power Network (最大流增广路算法模板题)的更多相关文章

  1. hdu 3549 Flow Problem【最大流增广路入门模板题】

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3549 Flow Problem Time Limit: 5000/5000 MS (Java/Others ...

  2. HDU3549 Flow Problem(网络流增广路算法)

    题目链接. 分析: 网络流增广路算法模板题.http://www.cnblogs.com/tanhehe/p/3234248.html AC代码: #include <iostream> ...

  3. 网络流初步:<最大流>——核心(增广路算法)(模板)

    增广路的核心就是引入了反向边,使在进行道路探索选择的时候增加了类似于退路的东西[有一点dp的味道??] 具体操作就是:1.首先使用结构体以及数组链表next[ MAXN ]进行边信息的存储 2.[核心 ...

  4. hdu 3549 Flow Problem(增广路算法)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=3549 模板题,白书上的代码... #include <iostream> #include & ...

  5. 最大流增广路(KM算法) HDOJ 2255 奔小康赚大钱

    题目传送门 /* KM:裸题第一道,好像就是hungary的升级版,不好理解,写点注释 KM算法用来解决最大权匹配问题: 在一个二分图内,左顶点为X,右顶点为Y,现对于每组左右连接Xi,Yj有权w(i ...

  6. 最大流增广路(KM算法) HDOJ 1533 Going Home

    题目传送门 /* 最小费用流:KM算法是求最大流,只要w = -w就可以了,很经典的方法 */ #include <cstdio> #include <cmath> #incl ...

  7. 最大流增广路(KM算法) HDOJ 1853 Cyclic Tour

    题目传送门 /* KM: 相比HDOJ_1533,多了重边的处理,还有完美匹配的判定方法 */ #include <cstdio> #include <cmath> #incl ...

  8. 网络最大流增广路模板(EK &amp; Dinic)

    EK算法: int fir[maxn]; int u[maxm],v[maxm],cap[maxm],flow[maxm],nex[maxm]; int e_max; int p[maxn],q[ma ...

  9. 网络流——增广路算法(dinic)模板 [BeiJing2006]狼抓兔子

    #include<iostream> #include<cstring> #include<algorithm> #include<cmath> #in ...

随机推荐

  1. Oracle MERGE INTO的使用方法

    非常多时候我们会出现例如以下情境,假设一条数据在表中已经存在,对其做update,假设不存在,将新的数据插入.假设不使用Oracle提供的merge语法的话,可能先要上数据库select查询一下看是否 ...

  2. MongoDB C++ 2.4.5 driver 编译安装问题

    安装参考前文,http://blog.csdn.net/sheismylife/article/details/8794589 方法一致.只不过这次在GCC4.8.1上编译. scons instal ...

  3. CDOJ 92 – Journey 【LCA】

    [题意]给出一棵树,有n个点(2≤N≤105),每条边有权值,现在打算新修一条路径,给出新路径u的起点v,终点和权值,下面给出Q(1≤Q≤105)个询问(a,b)问如果都按照最短路径走,从a到b节省了 ...

  4. (转)php 函数名称前的@有什么作用

    如:$register_globals = @ini_get('register_globals'); 隐藏错误提示~如果ini_get('register_globals'); 语句错误的话`错误会 ...

  5. .Net操作XML文件

    //设置配置文件物理路径 public string xmlPath = "/manage/spider/config.xml"; protected void Page_Load ...

  6. Android开发手记(21) 遍历文件夹

    我们在遍历文件夹的时候由于涉及到SD卡相关操作,所以我们需要添加如下权限: <uses-permission android:name="android.permission.WRIT ...

  7. 合理计划 dictionary cache 大小

    [数据字典缓冲区(Data Dictionary Cache)  ] 用于存放Oracle系统管理自身所需要的所有信息,包括登录的用户名.用户对象.权限等. 查看 data dictionary ca ...

  8. 利用TOAD实现把EXCEL数据导入oracle数据库

    利用TOAD实现把EXCEL数据导入oracle数据库 工具:   Toad11.7z(百度搜索,直接下载) 1.将Excel文件中某些字段导入到Oracle数据库的对应表 连接想要导入的数据库 ,然 ...

  9. python列表、字典与csv

    在日常数据分析时最常打交道的是csv文件和list,dict类型.涉及到的主要需求有: 将一个二重列表[[],[]]写入到csv文件中 从文本文件中读取返回为列表 将一字典写入到csv文件中 从csv ...

  10. dbm数据库

    所有版本的linux以及大多数的UNIX版本都随系统带有一个基本的.但却非常搞笑的数据存储历程集,他被称为dbm数据库.适用于存储比较静态的索引化数据库,即使用索引来存储可变长的数据结构,然后通过索引 ...