《Linear Algebra and Its Applications》-chaper3-行列式-行列式初等变换
承接上一篇文章对行列式的引入,这篇文章将进一步记录关于行列式的有关内容,包括如下的几个方面:
(1)行列式3个初等变换的证明。
(2)转置行列式与原行列式相等的证明。
(3)定理det(AB) = det(A)det(B)的证明。
(4)基于行列式初等变换的范德蒙德行列式的证明。
首先值得说明的是,先前我们介绍矩阵的时候,并没有给出矩阵行变换的相关证明,其实按道理讲它的根源是出自于这里的。行列式和矩阵是有着紧密的联系的,想在这本书中就是基于矩阵的方法来完成对行列式3个初等变换的证明的。
行列式3个初等变换的证明:
图片中给出的证明过程紧凑间接,无需笔者赘言。在这里之所以采用了基于初等矩阵E的方法,便在于矩阵A与E的乘法运算刚好能够反映这3个初等变换。
转置行列式与原行列式相等的证明:
这个问题其实十分简单,但是我们应该能够意识到这个定理的意义,它使得行变换和列变换具有了等价性,也就是说对行适用的变换方式对列都是适用的。
简略的证明过程:定义行列式A并写出其转置矩阵A^T。
将A行列式按照第i行打开,将A^T行列式按照第i列打开,随后可由转置矩阵的定义,完成证明。
det(AB) = det(A)det(B):
关于这个定理,笔者先前缺少了一些补充知识例如“可逆矩阵的性质”,这是推导过程中|A| = |Ep|…|E2||E1|这一步转化的重要依据。笔者会在抽空将这一转化过程的基本原理。
最后是关于范德蒙德行列式的证明过程。
证明过程本身是很简单的,但是它所用到的递归思维是我们在解决其他问题的时候可以借鉴的。
《Linear Algebra and Its Applications》-chaper3-行列式-行列式初等变换的更多相关文章
- 《Linear Algebra and Its Applications》-chaper3-行列式-从一个逆矩阵算法证明引入的行列式
这一章节开始介绍线性代数中另外一个基本概念——行列式. 其实与矩阵类似,行列式也是作为简化表述多项式的一种工具,关于行列式的历史渊源,有如下的介绍. 在介绍逆矩阵的时候,我们曾提及二阶矩阵有一个基于矩 ...
- 《Linear Algebra and Its Applications》-chaper2-矩阵的逆
矩阵的逆: 逆矩阵的定义: 类比于我们在研究实数的时候回去讨论一个数的倒数,对应的,在矩阵运算中,当AB = I的时候,A,B互称为逆矩阵,这里的I类似实数中的1,表示单位矩阵,即对角线是1其余位置是 ...
- 《Linear Algebra and Its Applications》-chaper1-线性方程组- 线性变换
两个定理非常的简单显然,似乎是在证明矩阵代数中的基本运算律.但是它为后面用“线性变换”理解矩阵-向量积Ax奠定了理论基础. 结合之前我们讨论过的矩阵和向量的积Ax的性质,下面我们就可以引入线性变换了. ...
- 《Linear Algebra and Its Applications》-chaper4-向量空间-子空间、零空间、列空间
在线性代数中一个非常重要的概念就是向量空间R^n,这一章节将主要讨论向量空间的一系列性质. 一个向量空间是一些向量元素构成的非空集合V,需要满足如下公理: 向量空间V的子空间H需要满足如下三个条件: ...
- 《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法-最小二乘问题
最小二乘问题: 结合之前给出向量空间中的正交.子空间W.正交投影.正交分解定理.最佳逼近原理,这里就可以比较圆满的解决最小二乘问题了. 首先我们得说明一下问题本身,就是在生产实践过程中,对于巨型线性方 ...
- 《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法- 格拉姆-施密特方法
构造R^n子空间W一组正交基的算法:格拉姆-施密特方法.
- 《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法-基本概念与定理
这一章节我们主要讨论定义在R^n空间上的向量之间的关系,而这个关系概括来讲其实就是正交,然后引入正交投影.最佳逼近定理等,这些概念将为我们在求无解的线性方程组Ax=b的最优近似解打下基石. 正交性: ...
- 《Linear Algebra and Its Applications》-chaper5-特征值与特征向量-基本概念
基于之前章节的铺垫,我们这里能够很容易的引出特征向量和特征值的概念. 首先我们知道n x n矩阵的A和n维向量v的乘积会得到一个n维的向量,那么现在我们发现,经过计算u=Av,得到的向量u是和v共线的 ...
- 《Linear Algebra and Its Applications》-chaper3-行列式-克拉默法则
计算线性方程组唯一解的克拉默法则:
随机推荐
- 关于Android4.x系统默认显示方向各种修改
1.设置属性值 在device.mk文件中加入PRODUCT_PROPERTY_OVERRIDES += \ ro.sf.hwrotation=180 2.设置屏幕默认显示方向 在frameworks ...
- The windows PowerShell snap-in 'Microsoft.Crm.PowerShell' is not installed on this computer
加载PowerShell插件时出现以下错误: The windows PowerShell snap-in 'Microsoft.Crm.PowerShell' is not installed on ...
- 序列化- 使用BinaryFormatter进行序列化
可以使用属性(Attribute)将类的元素标为可序列化的(Serializable)和不可被序列化的(NonSerialized)..NET中有两个类实现了IFormatter借口的类中的Seria ...
- 同一台电脑上安装两个tomcat服务器
1.下载免安装版tomcat,解压成tomcat1.tomcat2: 2.修改tomcat2中conf下server.xml文件如下: <Server port="8005" ...
- 文字排版--字号、颜色(font-size, color)
可以使用下面代码设置网页中文字的字号为12像素,并把字体颜色设置为#666(灰色): body{font-size:12px;color:#666} 示例: <!DOCTYPE HTML> ...
- Spring在代码中获取bean的几种方式(转:http://www.dexcoder.com/selfly/article/326)
方法一:在初始化时保存ApplicationContext对象 方法二:通过Spring提供的utils类获取ApplicationContext对象 方法三:继承自抽象类ApplicationObj ...
- java_设计模式_工厂模式_Factory Pattern(2016-08-04)
工厂模式主要是为创建对象提供了接口.工厂模式按照<Java与模式>中的提法分为三类: (1)简单工厂(Simple Factory)模式,又称静态工厂方法模式(Static Factory ...
- Spring_DI利用set方法赋值Demo
Person.java public class Person { private Long pid; private String pname; private Student student; p ...
- Android 学习手札(二) 活动(Activity)组件
1.建立和配置Activity 建立Android工程时已经自动生成了一个默认的Activity,同时也生成了很多与Activity相关的文件,例如,res目录中的XML及图像文件.AndroidMa ...
- 用css3实现鼠标移进去当前亮其他变灰
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/ ...