JavaScript进阶 - 第5章 小程序,大作用(函数)
5-1什么是函数
函数的作用,可以写一次代码,然后反复地重用这个代码。
如:我们要完成多组数和的功能。
var sum;
sum = 3+2;
alert(sum);
sum=7+8 ;
alert(sum);
.... //不停重复两行代码
如果要实现8组数的和,就需要16行代码,实现的越多,代码行也就越多。所以我们可以把完成特定功能的代码块放到一个函数里,直接调用这个函数,就省去重复输入大量代码的麻烦。
使用函数完成:
function add2(a,b){
sum = a + b;
alert(sum);
} // 只需写一次就可以
add2(3,2);
add2(7,8);
.... //只需调用函数就可
5-2定义函数
如何定义一个函数呢?看看下面的格式:
function 函数名( )
{
函数体;
}
function定义函数的关键字,“函数名”你为函数取的名字,“函数体”替换为完成特定功能的代码。
我们完成对两个数求和并显示结果的功能。并给函数起个有意义的名字:“add2”,代码如下:
<script type="text/javascript">
function add2(){
sum = 3 + 2;
alert(sum);
}
add2();
</script>
结果:
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAKAAAAC9CAIAAAC75eE/AAAgAElEQVR4nOy9d3QUV5q4XWBjjNN40npnd2Y8DmQEEtlpHMYZG9vjHBDRGCQMQxA5o4ACGUxOBoEEiCiBQIDBBpug1DnnrlzdXd1VXbnq/f5ogcGe2dmZb88Z7/54z3OuWhVu3bpP163qure6kTSTJINo2Bt021xhf6Clqfns2bNnzpw5Vld75NjRw0ePHD565EDNoT17q/dWHThw4OC+quoDVXt/zP7qfX+NA9VVNTV7q2srdxyrrKzae3L7/hNbjm7deXT14f3r6qo2HKnesm/fvi+rL+7Yf776wM6aAxtqqir37T1YVXW0qvrgoT17a/bu3bXv8K59h2uqdtdU7d5TfXBP9eGavXsP76ms2VOzr6qmat/ePfsrq/b9dfbsr9yzv7LywE3sq66s3V1Zu7vyQNXeXQf2bj9Y/WVN9aE91cd2Vx/as7e6eu+umsrKA5VHKiuP76qs2bnrwM7KI1U1e3fsra2pqz16Yv26DTWHDlTt3737wM7qI7v3Htu7Y/+unTXVu44c3bHvQPW+A/ur990Y1furqvdXHTiwb/fuL/fu2rFvz679u3Ycrqqsrd5bs2tnza4v9+/ZVV21u3r/nqqavXtq9lTu21O5d/f+fVU11VUHq6pqqqv2V++r3r9v7/59ew5U7dy17WBN1bHqfbVVBw7s3Ft/vGHdjt1Vp07vP/PV7kNHLn/b1HrxquuKqfXCtzZTq9fnROgwzmCU1+62m2yHag43NDTU1Z3YuGlL5Z6qdRs3La1YtrRi2ap1G9Zu2Fy+fM3iJSXl5cvKy8sryn6QLquoWJ6h/HpavrK8YmVZ+cqKsmVrlhauXlpaUrpt4fLNc9ctXrR25splc9eWzV9dvqi8YuWiiqpFyypLVxQtWz63ory0vGz10vK1S8tXLy8rrygrL1y2tnDZ6ory0ory0pKK1SUVq5eXla8oLV9euqK8bMXSimVLl5UurSj/W2nJstKSZeVFyzNpedHy8rKK8jUl5euKy8vLlxUuX7Zw5bIlK5YtL12xumTZitJlZRXlS1aUFy0vX7W0fF1x+da169euWLNm+doVFWsqSlcWLildtGjJmjWrSiuKiksXli9fUrayuLB0SVF56dJlK5csrSgtW15WVlF6I+VlpeVly1YsX7Zs2ZpVq9etXb1mxfLVFRWrlpaWLVr8xcrVa1evWb16dfnKiqLy0sKypUuXV6xas7q0tLRsaemy0rLy0rKysoqS8oriioriirJlK8pWVJSsLCxcNn/RyqLytavXl6xas2Td+vkrV+8/fmrLxh3Hqg5/U9vQfOGipaW5ufUqkrHrsjhMja2n6hu2bduxes36eYsK/9C5W9defbpl5TzctedDXXp0y8rp0//x7AFP9Mwe2DO7f68+P0i/p/v1tM/g7tmDu2c/3qvPwH5ZWdm9+3Xt8+If+j3/u8F9Hh70aHZO9/59euZk9+qV/djDOUMf7juke//eWf06Z+X0zcp+rEfOEz1yHsvKHtArZ0CXfk906fdYr5z+WTn9u/d9rHvfx7KyB2T36d+nz6Cs7EG9cgb0yun/47Rndv+e2f16ZvfvntOve07/bn0zaf/O/fp3z+nfr1f/fr3698we2LnfwIcGDHy038A+WYP79hrYp/fA7tkDH+03sHO//n169++b1b9zlx6PdOv1u4e7PdKt90NdevXI6v/Msy/8/ve/z8nu2bvno317dx7Qu0t2t859u/cY0Csnq1vvXll9e2T1v0bf6/TK7tezV3bXbr0eebTbww916fxo96ye2dl9+j/8SLdHuvTs3KN31159uvTO6ZzVp1tWdves7F5ZOVm9crJ69e2V1bd7r5wuvXM69+7XpXd2t66P9Hz4d4917/5cn5z+nXv06NyzW9/+v+2d/fmCJZMXLN64YVv19r1f152+fO58/Ym6FmszEicYc5PJ7/IdOVS7Yf2WFSvXdene+8GuPQ4cO2kPRCUACYDTgOZVitOIpMLKkJCBlX6YJkSISz+EkSEmQ0IGQVQ5ESgJUBXCYGAgcrIsCqogaqwIhASYAoymsirHykZmE9dhFGBUiCmQUCCmQEwBVoak1AYr/32uZxVTgFIhpoCQBiENrASUCpgOpAacAEIaOAFiMhAakBpwIvACEEkpDZCB04GVASWZt99+GwwFBBaEBIhJSCUgxQOvQEqGtAZpDQQdRLUNSQNRgbQEsgayASqAAqAASAAygAptUzQADUAFkBRgORBkEGRIq5BWQFBAVAxJMyTJSLOgCsBzUhgFGYa+NJTXYO2eqvse6vxozqCCgnlfrPhi5xdbztbXnzx54lLLJSToCZmbLOe/urB7V/XS8pX3/PyBQ8dPR+K8LUB4CNaFsy0+rMWDe3AuklDDccWF8w6cd2HCD1InmrZjnB1L/xCCdxApLx5zYykLDi0kNMb4Vibhw5OhKBdAOQ+mWHGwEOCgWDdFuomkm+A8OOcmOAeZdpBpJ8k5SM5Ope1U2klyTpJzEmk3kfbgnAfnPLj4V3Fjwo9x4IKNEO246IuK/ojowkQbIZpJ0UIK3qjoj4jeqOjAM1NENyq6McFOpNxJ8Ts/dsmLXvWjEVYSAV4f8pqntdl6vsHRcMJ/pt53qj548nTk9PlQ/Vm0vgGrP4XV15MnT5InT9In66+TOHMaP3EiUneCOnMObfjKd+xE8MSZyOnzoVNfBY6fCtSdCB8/gdXXxxpOsWdO0/V1dH0dXX+CqD+O1deHT54InTzpazhpbai1nT7hOFHv/+pC6ErrkGdeZEXdFMFxBb6o3PfbB7vkj/1827pNO7ZsPnBwf8PFM0jTpWabxXnk8PFVq9c/2r1P9eF6HxF34wkHGncQKTvG2XDOTcm+mGaJpC7aopYob0Z5S1Qwo7wl+ncwo7wZ5cxY0oomLCjXhMJVDC6TQhPBOaJpTzjtDouOiGqKQisKJoK14rQNTdlQ3oGmbGjKhIkmTLRiKSuWasXFVly0YrwNTVmwtAVL21DeEeUdUdEWFW1R+QepNSJZI4I1Itkjgj3cllqiUisqtaKKI6Q4wpI1IrWiUgsmtaKCPSK4QoI9LJmjUhMuNWGKJaJYolJjlL2KJa6grJMzrFTaisaopPjcH5/2N16x1tfaDu8LHD0UPFgTOnQ4euR4tOYwcfAAdXBP7ODe+MHK5ME9qYOV3KE93KE9qYOV4omDsYPV2P698RO1dF1d5NAR5lSD/+BBtO5YvKE+UV/HHDpA79uTqtkjHd3H1VRyNZXJmt3xg5VMzW6iphI/uDd0uNp7vMZ0sMpUXW0/VJt2+p4b8KQK4GZYM84QMqz+YnvvrH7TJk5Zt2r1gSM1O/Z9idgszkvfXt31ZdWI0XlPvzjUi8b9NN/kJ2w4Z8XTFixtinKmcMoS5e246KI0B6XaKNVB6jZKdfwVZAclO8k2HJTsoCQbLThowUbLJhpaGTAxYKV1D677UfBjugcHBwFWCmy05KB5Fy27KdlLiW5KttOGnTZctOyiZQsDFgZclOKmFCdl2Gkj89pNGi7KcJFwPXVS4KQMJwFOUncS4CJ0FwEuQvfg4CTARoKNBBcOmX8dpO4gdSepe3Ddi+suAhwkmGkw02AjwUaBi4UWUmoixVZGaYwkW0M0y+vvDBkaunzZceSgfc+Xweo9kb17Inv3YvsORKv2Rvdtw/ZvJPZvpPZvjO/fkNi/IbV/Y2r/RqZ6g3yqOlG7J3xgB3b8gPdQte3AHvTcqWDDMe/xGu/hvaFDu5nDe7gjlamabWzVxuS+DfF962P71pP7NqD7NkT3bwjv2xjYv9Vbs8u0e5uzqsp3+Jjv1PmRb37g9IRNYbI5TNqIRJjknnrqhbeHvlNeWrZh26Z9dTVIc6PpYM3RL3dVZfd7fFtljRONW0KMg0ybUa45mmqJpq2k4qQ1O6k4SdVN63ZSuRnJQUgOQmqTSklOSnKR3+Mg03aKs1JpCy2aaM1EGRZKcxCaFwM/CgH0erXqNlq20YKbkn2k7CNFLyk7KcNJgZtSXJRmo8FGg4vS3KTmpAwnZbhJzU0pLspwUYbzBjJvCzuh2QnNQWgOQnPimhvT3JjmxA07AVYCHDg4ccOJa05cc+OKG1c8mOLBFCeuOQjNShomyrCQYCHBhKkmQrEwcBUVWqLpQEzhRXj5yWfCFy449u11btsU+nJrdMfW6I6t6O4vw7u2hXevj+xZi+1eS1SuZSrXxCtXs7vXJivXxfesj+xcc3DKZ/NefmbaS8/Nfe/tjbNnXjmwb+W0ydPf//Nnzzwx77WXjhR8HtyyJlW1NVm5PrFrTWz3GrJyNVa5Jly5Jli5zr/7C1/lBsvWVejBvf7du1o2b49/2/xizmDDAAeRMJPJ1mgsSHC7dtX06dWvsLCwfNWybdU7kcvfXTl29MSq1euzBzyRkMAapu0YZ8XTV0MJB6M7GN2dACeteWPgIlQHoThJ2Rc3Ijx4GM2Oi25G8cU0D634aMlDCoGY4iEFPyXYQjGcA0ck4cISqGDYKc5GC2EZHLRgxwQ3KrMSNFlIKgEhQg1RKi2Dk1bcMS1Ay54IG8CEaMwweePRJERY8McgnIJmfzoQB0dUDCbAHwMvqQQY3UXKARbMKO9PgjcFLSjnZg1XQrfRcjgNraFkKAluXIomwB7ioglw4povDtE0uEnNFkxFaAOldIw2orQeiulBWnfjkocxAjw0RSRnHJwEuAiwoLqDATMqOKMpSYQX+j8ePXfuyvq13q0bfF+sDG5a7f1ieWDLWt+mtf5N6wMb10c2foFvXEdtXMdsXBPbsI7ZuC6+batv3Rer33kfMAaSCvAw7rWPVswoGjnkfRAAOBXIVMWQt9EN29htX+KrVtMb1hIb16Kb1oY2rQ1u2uDftNG7abN383rvltWB7etcG9Y6tmwjGr5+Y8AfUynFisZa8KQJT7mj8bQEPbr3mTZtelF5ydrt65ELX188dOjI8hVr+/R/PC6BPZpwkGk7KUYVcMXhawfhYnRfHFqDbIQFL6nYUD6UNEwh1oGmUA7iGtjDbDiuYKwWotN+IkXxBs7KOCujcTEaE5ISNDlChAI2kvUlEnhaoFJAJ8EVZNMqRHGFZFRfiPKg8Uw7QSbUcJTFGCWtQhQXgrho8nHOqOKMiIwIPhJSBtiCqWjMCMeNUEwPxlUPLflZzRxlPQnFl9ScjOighSAPrdFEEsDPyFHWCJISFtMjjE6loTWQag0lcRFSMkRxyeemCVxkUnDVFiJT4KckR5hv8sfDGliotpbGHjU8NNgwyYulVAle7jc4WF//bcVSx8oyZ/kiz/JCW/l8x6oi68oS26rljlWrPKtWBleuiKyswFcsw1csiy5fRm3aaFm2YvOIsVOfHwocgAAGCyPeHQsqAA+Q0Be+M/KL90d5VmwMlK1i12+MLl8WWlnhXVXhWr3csWqFffUa28o19pUrTeWLHCuW2CqKLWvWEifOvNH/qTSv2fFEC55sJXhnlOUl6N4te8qUaYuXFq7ashb56sy5ffsOlJat6JUzKC6DA427aNFJy9/5aDMhoBI0BxIYB5EEhGkFjeu0COYg7WfklAGWAO1E4xRvoAkJZ2UflkgIhsOPUUnRGUADUSqelAIBmuUhGJdDnBjlqTATicXS0ShLxWVfNB5BU7GYSMcYRpBQEXwJYBISQyeD0UQYSwqcguNJVoNwElI8eHyUHVWwNATQJBmTAjjvwzlSAIzTfDSPpw1fXGABmkMEKoE3IXhj6VBCckfjIZLHGMkXivEiRGk9QKuYBE4sSSZ0mhRBhTjGtZg9D/fsH6bSnAqecCqSNFppwcZoQQwiUfBGIECDCxMDOG+I8HKffqFjxy4WL7KWLLAvnuEunmMpLLCWz20un9O6rNC0vMi6vNC9bIl32cLgsgXBZQt8yxeZSub7tq23Ve4sH5+X9/7HoAPLgwjAyKACjHz3w+UTp367+gv/ps2usmJ0dZm3YpF7+ULrioXmlYtbVhQ1LS9qXlbaWl5oLp5pK55lXjK/qaQ0crjulZ4DkqxkCjNNBNeCc45IkpegW9c+Ez+fMm/JguUbViINJ0/v2VNVXFLeo8+AuAxOLOGiRQclOWmZAbjkJoIxnRLAE2HDWIpJGcfPNf5l7lJnlA3HlZQGjhDNa+DHWSopR6hUGI9FycSj3bO+/u4qSsTicSFByzjGBxklkhZnFRcgtyP33HX3Hbfdg7Tr0OHe+xGkE4J0uKNjO+S29gvW7HdR8Mij3e+95y6kXSfk9rs6tUNuQxDktgeQ9r9ph3To2OEu5LYHFq+tSvAKE0tkDXzK5EG9aDwuwncm968f7vFNq9OBxTDRcNOpXUdP3vXAgy2u8KUW1+AnXwqFYnwKfvuf3c1Owh5ml6zbWbJhRyAS99rDdyGd7kHuQZCOSPuOSPtOSPu777jn35H295XuPmSipRAOGAq+6HXBKZVXn+3aDT9+9LvFc2yLZjjnTvYvLrAtmGgrLjAXT7cunelYOsuzdGawpAArmYqXTCZKpqFLp1sWTgysLz27dP7JtcsXfT7hk/c+YJLphA4xVftoRO7sCfl1q1ea169xlhYSy4t88yZFSwqCS6d4y6Y5y6bZymZYl862FM+1Fc12FE6zL5xsmT/j8oL52KG6IVkDFAk8jNBEcI0YZwunOBm6ds7Oz5s0a/7ssrUVyKn6k7t37yksKu3eu29CAheWcNNpB5l2M1JLKIbxwAgQwjmGVXneCKPxhoumYfkzPaTgIfkALRJpwx2NEym19swF5La723e8F+lwN9KuA9KuA4J0QJCOtyH33NPpt5etWHMwXLZhUcO5aj7BRPxRJpUKM3RSUNz+QDDiPFh/YumO060oBMMhMNKMKIdImvKbe3d98EqIc7PgdVhA5KMyBBUIY2hj44XH/vT8Zbs3TCapuLitsib3s4kRhkNZgQdw47FwjDt/xdQla8DXF5vLlq7ZsG4HS6R79xh85pzpq6su5N5/t5MsnVCCTnRQ1/5RRwglYoyo+oh4iOISaZg8r3TmFzusrBamACfAgxpe2nDgQoBICiz/+O9/d76sZPufX9v3+gsHX3mq9s1nD7z+xP53nt3/52fq3vzj6TeeOD/0sW9fH9w4dFDz0AEtQwdfefOx5tyXv8odsnXo0wenjFs68qOxQ19jwqFIOBgJ+9955YVpbw/dNOKTQx+9e/TVZ5vef+Wblwd+98agC28N/OqtgQ1vDTr55uP1bzxZ/9rTda8/c/CNpypfHVz52vNbhr52oXxV9s9/QxFcs59uJtJXUf664PGfTZgxa/rSFUuRkyfqd+3ataSwuHvvvqwMbjzhpjk7kQokdRvGBsi0zYs92jUbQTq2Qzp06HAv0vGXyG2/aP+Lh5AOv0Buux/p+Mvac41Bij93xfLckD+bnEEixiUFLYRRnGTwvBGLyj26PHXJRvgS3OySz5EOyKY1y8QkN+bzcRdaG6NMgpPl4aPfff7NoTNXHwtJIKvChM+HIXd0QG5HfoYgndojSMcHkI4P/Pv9He5EkK0nLtg5WLB41m3tkHb3dUTuvu+XD/zh0iVz7sg8BOmEtOuE3H430r5T/flLrAysCMEIQ5N82Etkd+5numh5vO+zVxv9oyYtOGX2ehICTgsuk//h+39/J9IBQTogd92L3P1zpP3dCHIfct9/Tl692SVDkAaUBDemeRjNRvIBiuXj7IAHfn2htGj7ay9WP/9kzbMD6l59/MAL/fe/9viBIYNPvDzg7At9L7zQ9/IL2a0v9Da/mGV+sU/jyzlnn8869Hz2sWFDi198ctxTAwGP4B4PHgn7fS6Vpaa+/mrxS8+dGvbBuaHPf/viY82vDLz6Uva3r2R9/Uqvr17pc/qlfqde6N/w3KDjLww69PKAHX/KqXzljxteeeHy8tUDfvU7gTNctNhEileinDmcSqvQrUvOZ5/mTZs+taSiGDlxvHbnzp2LFhd2752TVMBLJv1M2kkmQynNEmJiAqQEiETohx589MstOwg8dvaK861RUwIsNPmYXz7S9/gFUyCmoEn97CUz0v7ujvf/BmnXCbn9HuSOe5B2ndoh992O/PLeTo9eaCWCnFy+aV7tyY39szqfPXVy8J+emL+ipGjVqqtWy6hxH5VvWr9o+zfWOOBUZPnKOSVb1nuoCKSdEutpToFTBiZqmjb+3S/PXWnhoHzFwvXr5gcSUTdFPdo1u3Lnobvu/HUoFCNjUohI5X466Uj917/5XbdPcvNkEeKUJMX0NC7FvPEn+zx7/ms7pUBYh0shQgawN3t6/qZrLEiFcZqSNQ8RD8UFT4SdVfpF0b6jVxKSlzYiNDgIxRnXbLQQjHECyw74t19eXV5aOfSlg396ovbpAWdeebL2+YFHhzx+5LXHjw95ouHVx79+9fFLQx5renVgy5CBLa8Oanz98csfvFj//kvb//zyrOef1PzekM2BErFX3/3QQ1ItplY5FJry9B83v/TCqbde/+rFp6689tTl1wZfeH3AuaEDTw8ddHLI4/WvPnXyxaePv/TH2tcf3/NSv32vPbfx5Reurlybc/9vUgnFHGWbSPFyNG0O8YIGPbr0Hz8mb9q0KUvLipDa2qPbt2+dv3hJ9959Uyr4aS4QE7wU5yFTobiAs2m7J5CIc2SUyO7R68jhutrzVz6bU3zZg9/1227nWn0pAA8p4Bx8Z/L1e+olP5bEEhIeF6ikLOhAEDzpSb8w+L260/ZASpq/qmD/0VUNB/bejXSoPlHvTyX7PfHHKdMmb9hauruuZvKa43YeaJYsLp22YN1qQmRToW8+/ej5redbHBIocefItx871GRrSqmLi6bs2Dw/kghFkske3Qfdhty3Z9cBHGNwPMmm4MOP82oOnU5xUnFR2dNP/snc6P7Dr3p0RO67B7n7DqQT0v7nyG33Ix3vK9tVhcVEa6Ojx78/ehdyZ7tO9yC3d0Ru74R0uA9p/wuk/S+mrN9hSoOLMoI02EnFmdAdcSGS5GWOG/ibX7euW1X19tCDL/3x+POPfTX0mfpXBh9/48m6N5+sf+u5hreePffnZy+8/eyVPz979Z1nGt999rv3/3T6/ReODx9a/GxfsF7GL5xNuB3vv/5aft64Dz58x2tpTlpbtcsXlz/7xIkP37j0yRsX33nu4rtPf/Pe02fffbrhnWdPvv38ibdeODH05eNDXzj+1lPVLw84+OeXNr/+SvMXG/v96j84VjWF4s2EeDnCm8IpQYce3QaMH5NfMHVaWWkRUnv8yOYdW+YtKuzau39SAS/G+si0j+JcWDyhGD4UX1xchLRD2iHIbQiCIO2ROzoiHToh9/0CueNe5Lb7kA6/+Nl/dm9ykRebfQOfHuqNJlkBQmgcpVgmmSaxpBGFxx969myDnZJhzrqZVcfWyS5/7593/dqC2xijpvLoI7/6md1Rv6lm4/zKr00cxLjkkqKZi77YGIzHDcr8+bDXd5w2OVIASe/wV3KOXGp2i1BaOPGedgjSAUFua3/X7b9vuRgcO2LU+tUraDRBhoSJny48UnOWS8VIyqsIXOsVe//ur0RdYgxlxZRAkhzDw+zVXyxevylCxEPucM4felABPEjQhKjggurDk6oBBfNWTlmx3adDkIUACeao5EpovqQUjiWkVKrfA79qXL+matgH+15/8Zthb51574Xjf36iYdjzp4Y/fyb35a+Gv/LV8JfOjXj5wshXvxk95JtPXzs3dui5vLePjnl9+/vPlr7cf/azvecPGbxy5Bvbpo6a//6LM19/cvYL/Za+MujL95+rHfXa2TGvnh3x4vlRL54f9eJXI18+O/yVhtzXTg4bWv/JGyc/eb3uzT82fPTSwQ+GfJn77tXNGwf//iE0TAdo0YSnTYTUHGJTAF16DBg18rM5BTMqlhQiR08c2bxjy9xFhV17D0zK4MVS1wQzzggaosg4n6IYWpKkcDDi8Hjv/s1vkPvuXbBqDaEYKKe58BTBQ0yGhgs25M4HEOR+BLnn9jt/3r7jvUi7Dncgnf4NuffnyC8cHsFGJGavmFh3alP+G8PWztow4Mn3UB6WFq67G0Hs5gOHTu/4y4YjTQI4w5E1Xywr2rAdTwmpYOOgrv9xxs44YgC0e86nQ3fWNpioxLoVs7avnpISQz4M7d31xcbzISIc7t39kbPHz6cIGPnedMvVIEV4V69dMGbMJ05b8J4OXW9HHux0x88QBEGQjki7TkiHTuXbd2gAXovzd/f8qiPSvsO9P0PuvBO5rRNy5y8R5H6kw78v/fKYLQUuHHwkBJIQFMCEMm6UFDl+4O9/b9q5/cys6XWjPmkY+cG5Me9+N+nDrye/d2z4n74e+8aFT9+4OPbNC+PeujD+nW/y370w4b2vJ753buIH30z95JuC4eemDWv4y8cnJn14asonZ2eM/mru+IaZn56aOvzMlI+/Kci9PGP41ekfNU55/+L4N78d98bFsX/++tO3z41598yY9xpGv98w6p2Ln7577tO36z77+EjB599u3dznN79VRLAHGQuWNuNSc4hlAR7tOWDkqGuCj9UdvkkwyvtI0UulsbTmxMhwPB6NxyIk6QtF132x+bY77zn+7bcffj7h8wWL3hjxGS4ByhkBWvWR8mVzpFvOMwkBfCiLxyU8zjPJNB9Lgz8x6MFBp03xEEDFijHF89//t192cVrF0R+MLVxQPOC5dxsufvfh64/s2Dp76pbDl9JASfKceTNX7d4fYljnpZM/vx053hiKSMB4WwrGvFNZ/xUJUL60YOsXs4O4LSHKA7Lf/PaMV04LNnPTg7/p7DCTT/R/9/IFdzKJf/DxywcPVUdC8Ud+96zfqQg8JJMcTbFxTl6ybv2SNWtC4SjuDwEng6BESNIeDhNJwRdiJBECaNrLgS0BIRb8FPgS4E1BMxrzx1Icl346K6t5z94T8+YeGjfmm2mfX5o14fSkYfWTP748b6x9+ljP1LHeaZ95p4/zzsj3zICb7qwAACAASURBVJrgmTXBNfdzU8E486x825y/2OZNts2bbJn3F8vcKaYFU6/Om9w4f4ppwVTLvL+YZ+WbC8ZYp45yTBvpmzHON/0zT8Fn7mnjHFPyrJPzzZPzW/6Sd2HCiPNTx+4fN7xm9nTn8RMvD3qKwLggo1hRMSM4BfBIrwEjR302e/qMssJC5Fjd4S3bNrc10TK4UM5DCh5S8FJcIM5FU2lHOHrmu8sd7r2/fPn6MJk8fvHSu+PzSBWOfnMFuf2eqpPfUCL4KaX+vPmNDz5z+ONoTKKSKsrwGJ1k8LjqpZ/r86cTrXELrxYv/fCu25D1Ww4Fo5DE4oP79j99NeiPpSaMGHjH7UjF0YtNCpCSHkBD5ggdk4xf391+35fb7314AHLnb747fZz223xxwU4lly1fuPmLxVHGF6SYP/zuSYeZ5XmBoohkQgt6uYH9/nzpWw9KhJ54Ovvr776xO9E/PPgsgvweQe5GbrsDQTog7Toid965aMUKXYduDz5sOvftwB69cZoZ9tm4O+//Zc2RU9FI8uuLVuSe/zhjjTpxw0uDjdKttGyLiUFOZtPyrIlTDixb3bJzl3XTxjPz5tTPnHSucNZXZbPPLpxsXjjNPa/AOb/AtWC6e+FM96JZrsWzHEtmBSoKvaWL7MXzLEvmWgrn2YoXOEsXO8uLWooXtpYucVQUu5cVecoXe5fOC5XOi5TO9y4s8C4s8Myf7phXYJs70zx7pmnWzKuzZ1xZNPtqxZKvV5TbDx5cPWveiHdyNQPMvoQVFa241BLMCO43fPTYGQXTS4sKkdq6Q1u2bZ67cEm3rH6sBC6U8xCSi5S8MdFJsk4qvmD5qj8OecuN0v4oywhwptH02oiRkbTsopJOMvnmyPzbf/6QE02fvGhD2t/f/u7/QDr8DLn9XqR9p9vuuv+uTj+7G+nw0K+6nGqMWpPpBWvHVx0uTceNdBzCZCIcS7BpoJkkl7xSfWxlwYb93+DgIVMJUV64fCNy2z1bNqxPJrlgEixR4eP33/vlfXefuWpFJSiYOfmOO5B2d7dH2nf8+S+yr1zBHO5AgkupAGYr/fsHn/r2ku9i8+XsJ7JwNtFoDj7a9eVgBHwoG2USTELAmdSUhYuWbdxYXLx09+ZtSZR8uv9gs8VGJjkynnL78cOHT7/6Zu6ZFs/dD/U534r7Y+BOgCWmOVK6iWBxXmtusjzVq2/F51PN1TXU6bPE6YZQ/VH/6WPoV7WJk4e4EzV8/WGu/jB/8gh/8gjfcJRvOMqePJqoP5I4dZRtqEuePp44VcucOIIdOxQ708CcPhU7XR9rqGVPHk3WH0odP8Af3y+dOiTWH+LrD6dOHEnUHWNqj9HHaom6Wve+PbYDVZYjh1fNnPt03ye5hOEJck3umC0q2zClNchyAI/27Dd89Njp06eXFC9GjtUe3Lpt4/wFS7r1GsBK4ELTHkJ2knKjn4qkISLoTX40EBMCtOgKJ4OMdOqqeeKiolBK9sbSuAQRDvy0GmHhoin0xEvvu8LJEC1GGdGPs0RScnlRKaY++oc+p6/6m6lYcWVRZf0m0kdSfsETkykAfzD24bvv3Xk3gtyHrDx03pKCB/s8ibTvuGzznlBMxkiWjAnhFAQSQNCpcITo9MDDlcdOV6xeXVRWHJN4P5H83cNPX26ifFGq/V33IO3uQ5AHckcvChPGnJKicQUTUDblRflf/+dTdq8WZTVrIPKfD/dA2ndC7r3/6JnzGBmPBtAUwY74KPfue+5H2ndAOt6L3HE/gtzz5b4TdoIPidDsT0c4cCbAzKhOHhqjrIviSVZBA+TKBaVDcp58vnv2K737DXrokf4P/+H5vr1f6N3t5awuL/fq9kpW95d6d3+5T48MbwzMGToo541B/d4c3P+txwa89diAoQP7DhnYb+jjT7wyaNBL/fq+1LfPkL5Zr/ft+Xp2tyG9u7zWu8uQ3l1ezer6Yla3F3r2+FPPns/2zHqmR69XcnLeevKJVx57siBvipwGq4OyeNhIAmxR1Y4q5kCb4NwxY6bPLCgqWYzUHju4ZeuG64KdUd5Fyg5CCvFgQtnGIBkWAJPAH9cxDvy06iBYN51yEIlgUm4N0ZgARBrcuGjyxSgBIgkdSxnRuBRm0pGYwKsQDiVxUgpzuk+UrjBeK+0BDVKU3BRRgiqE0bgm876o2U2HPCI4UuCP69G4FKBlPyUFcD4ugS2cwnkIEmk/lsRShi1MJzVAE8kAxQRjQpQGOgWOEBWOJRkJ3KhKpgBLQpQT3BQeTPDNHoYRIUiDl1G9dMqNs6QAWFpzYXE/GpM1cLtCPKeG0HhSgVZ3BGO1hAQ+SmEBLvsTaBq8cbBQmpnRTTG1lRLNRNoeTVIxLUZKKgcgQDomSZyiqZBMS3FRiEl8hricjsvphJROSOmYwNFCiuRSeJLFkyzJpRghnZClmKRQkkwLEiOICUlMSUJK4lMix0l8SuKTYjouiTFRYkSZkuSYKOMEAwYE/JhmgMufdAR4Z1Rr9Uu2iG5HNXOATQM80isnd8yYabMKlixdhNQeO7hly6Y2wSI4I2knrthJpSmYiCpgZ2QTzlsw3hc3PAz4GPDFJUoFB8H6EzIpg4sUIiwEYzqaBB8pEzw0u4m4BERKc4RoNCZFCJVIgJMS3ILskrggnwoFohQhhNPQSkCUTmMEznAMLoqXQqKbB18cArTsI0WCBx+lujAxFNODjBaMGZQIfkoKxeQwq7qJZCgukGmIxsGNGTgH/hgfYDQXofspcOJamFOu+AO4BIQM5pDhJiHAgjcueWKyg0w7KSHAKgFadIUYJmVEKSFCCwEyjaUgwoE1yvtYaIry/jS4GWj08444uHn4xp9oIkVPCswo76c1i5vxhvggJpidmD3I+GjhihdrxplG4iZaiFgLEWvC6FYybqZZC5NsJePNONOM0s04cxVLNBHJZjLVSrKteKwFY0wYbcJoM860Xl+XSDSSyUaCayKS3li60RVGk2AOsC5UNQcVLwWWkGaL6M6oZvG3Cf7k0zFTM4Lrag9t27ZlwcLC7lkDM4LtqGTBRAsmepLQgnNXQ3E3azgotTUohlLgZWRvTPTGRC8jexnZy6h++mYYOUDLAVoM0GKIFsOkFqAMWwKsrOZOsP4YG6LkEAleCjw0+GkjRIsROhZiUg4GrDHwMOCn1QAtB2jVw4CXNkKUGqJUbwy8MQgySpCRfDHNF9MCMSkQU4IM+GMQjKv+hOiPG744+BnwxcGbEDxs2htXPHHwMOBhwBMHV0JzJnRnAjxx8MZ0b0xvy4rRQnEjFAd/3PDEwREHWwKsMbDGwMGAkwIbDWYaWmmjhVJbKdVEKCZMtqKyLSpbUdGKiiZMbMXFZkJsxL6nGf0eEyabMDkzCCmDBRNNmGxC9VZMb8V0E6aaMNmCypa2WZk85VZcbsbVJkJtIvQmQjURQgvKNYZSTeF0a1hpCSrmkOFAwR41bCHZEeZZBbpmD/hg5IiCOTMW3Sx4MCuCI8zbUcUclS57Y3ZGsdKyhRR8HHgTYIkoNkxxEqKTSF9DdBKiG/8RbYPi0h487cEkJ66ZSGilDQfFuknWiYETg8wQCwcOTlzz46wPT1oJsBBgJwwnIXlw0Y1LmfEYPkz04KKDBAepewnJSwiZ0SMuUvIQkovQXYTuIgUXmZmuZgbr2Km0neLspGgnNCsBVgKspGKhpFZaa6U1K2nYCc1KtmEnNDdpuEnDQepWCloYo5HWWyhoIQwLoVsxzYxrrZjahClNmNKIyo2ofCUiNobbuBIRL0fFS1H5UlS+HJKvBtUMjTfQGtJbQ2oGU0g1hRRTSDWF1NYQXEM3BXVTUDddW6w1pDaH9eaw3hTWm8JwNQJXI/q3Ib6V1iwMmChwxMBGQnNAbfKJ9qhhC4muMMcq0K3PgA9GjCqYMysj+PAPBNuisjkq2QjZEVMtpHglGGsKJmyY5MANO6p4aNVDKzej3sD3031U21w3DQ4a7Ay4Y7yHETwEeAjwULqbVt0keEjwU5KPltwkuChwU+ChVR+l+CjVTYObBj+l+CjFzYCbgUwj4WEMD2N4Gc3LaB5K91C6h1Y8tOSmVTetZ9ZyMaqLUVyM6qLBkYEBa1w3J8CcAAcNLhrsDFhjYImDNQYeGrw0uBmwxqCFheYEmBmwUmCnwUkZDlK3UbqVNCykYSb0VlJvIYxmso0m0mgijasUNJFgRsEabcN2A3YU7Cg4fkz0b5JZxY6CDQMbCjYULBhcicg2Fhpx5WtPsjmqWXAwR3QXCXZUs4XTPxRcsiQjeNuChUUZwfYQZ41I5ojYEuauhhJmIu2kZQchuUjZQ4EdVWxo2obyN5O+gZtmWdG0FU1bMNGE6hZUzYyYtEbAGgFbZlYULFGwRUVHNG2LGNaoYYvK13PLtH4/fm2LilZUtEVFG5q2RnlrlLdGuQyWKG+JChnMqGBGBXNUMkeVVlRpRaUmXLpMKFcJxRJRrBGlBVUaceUyoTXiii2iOyKqOao0Ycq3lPIdITeiqikim6OSOSqZIqIpIraGpdaw1ByRmiJS5qi9HJUv3cCVsNIUNFoC0BKAlqDRGriO1nZ0BnVTSDUH1e/TAJiC8OP0Rm48ypujqoOFVlJvjqqOGJhQ/ZI71RqU7ahiC3OOSLKtiR4xumDOnEUlRUht7dHrghMC2EOcPSyZwoKPBVOUM0VTDjJtDidbvDFzIGULpx2Y7MDF/w72a9gIwUIKdlz0RmU3KlsI2UzKLkx2YbKZVFtJ3Y7pLlR3oaoDk13Y9zm4MMGBC5lMXJjgwgQHLtpx2YWJLkzMlMSOpZ0Y50RvHIwt2DDBhkk2TLFhihVTrLhkxSUrppgIpYlSmknFGVVcUcWKKc2kcpXSWkjFheqeiGJHFROhXKGVq7RiwURbVMzkYMMUO6rYopmTrmxB5RasbXTtdVpQpRVVTKhxM5lTrGrCtTYIxYwrN6SaCTfMmPGD9EbM2DVwrTUstIaFK162OSg4KTBF5JaQGGDBjkq2cMoRSbAKdM0e9MGI0QWz5y0uLkHq6o5t3b5twYKSbr0GJwSwBXlbSDQFuZYge8VHX/ESplDcHk3aQklHmPeTujXEm0O8OZz6u5jCvCmcao0kW6MxU5S2hmOOAG8LCs3RRDMaM4dT5hDfhCavoqnmsGIOKtZQ0hZKWMMJayhpCvPmcMoWilnDsdYI3xrhrUHGGmRaQ1xrKG0JstYgawpyplDSEopbQowlyFqCSUuQNYUyJM0h3hQWTGHhWjFSrWGhOSJcxviraMoRSDkDKVOYv4rylzG+Kco7ArzHxzsCqdZI6jKeuoQlTSHWGkhmtmgKpi2B7zEF081B/mo4Q6oxxDeHUi1BviXIt4TSTeF0S0hsCqebwummMNcU5hojyaZoqg00eRPRVFOUvxnhxrQ5wjdH+EwlmMJ8gAFHVLRHBAcmmyNiY4Bt9KdMYd6GCZZIyh5tE/zR8E+nz5q/uLj0JsHxNNiCvDUomILcFQ/tZ41gUvXFJUoCRoIIo4dIDecB5wHNkP4h0ZuJCBCSICLpVFqleB3nAU0DnjZQQQ+JEBIhIkJIBL8IIQEIHiheJ3jA+bbVKV4n0kZIgIgAFK9TvB4RIJIGggfiWgHwa/9mCoanAU8DmgbsGqgAqAioAKgAYRECCoQliKWATQKRhrDUNiWRghQLMQ4wAfwqBBQg08BwgPIQTQPKA84BlWojU8KIACEBQiJEBEDT1wrAt72+qVoEiAoQFY3Ij8jMiog3IEBEvLaK0JYDfm1Po7QRofSECHEZfAyEOYjw0OiL2fC0JcJmBHfr0ya4sKgMqas7tnXbjnkLi7r1GhRPgzXAWUN8ayBljnB2LL3jSMOIiTM+HD1hVP60UeOmffb5rJHjp48YPzM3L8P0HzMsf3pu3sxh+TNz82YOy5/+8YSpwyZMGpX3+ZjxkzILjMybPCJ/0kefT/1w4tTc/MnDJkz9cMLsjybMHpk3eVTe5yPzpo7ImzYsf2Zu3vRR4yeNzJv0cf7Mj/Nnjhw3ceS4iZ/kzfgob9aIcVNHjJ8ybPyMYeMLRuRNHZk3eeT4aSPHTx+RN+0a04fnz7nGrOH5M3InzBiePyd3wqyPJxbkfj5t7LiCcZ8VjMoryJ1Q8PHEgtwJBWPHFYz/rGDsuGkj86d9PHHKxxOnjM6b8un4abl5M4flzc7Nmz1y3OxR42ZmGDkus3czP56Q2d/pI/KmjxyfYdp1RuRNHZE3dUT+5BH5k3PzJ+dOmJQ7YdKwG9LcCZNyM7PyJw+bMDk3f+qwCVNz878nk8PIvMkZRo2fOj5/5sjRU8Z8Nv3jUVOG58/ZcfgrN6WYI9yPBc+cNb+wqBSpPV63dduO+YuKu/YeHJfAEmTNIb45kGwNpCIc5OZNFwEkAA1A1wEAjGtPSf0t1JvTDMaPVlQB5BteZJY3bs7EuCGTTA7qtVn/KD8uDxh/ZcqPt6jdsEXj5h1R/6nyqDfn+Xen34gBAAC6DgaArIMAMDx/FpoGSzhtwwRLhLNHk9cEj545a15hUQlSe7xu8/Yd8xYXd+09MCPYFEpmBKMpyM2bLgGoBgCAoWdE6HAr/mWhg6HqmgQAigEiwPD8GTifESxZIpw9wl0XPH32nMLiou8Fd+lzS/BPP/5bgrtm3xL8vzVuCf4/HrcE/x+P/0HBQfaW4J9e/A3BEe6W4P8b8Y8LPlZXu3n7jrmLijr3HhATwRxItAbZJj9rCiUxDobnz7gl+KcU3wvWACSA3LzpOA82NG2OpG1o2ommWQU69x7w0fDRM+bMbRO8adv264IzR/AtwT/V+B8S3BxImoLcLcE/vfgbgqOiJSr8HcGZc7A1lDSHUy3B1C3BP8n47wr+MHfUjDlzlxQV/hXBlgjXGuJuCf5Jxn8l2I4JLky4Lnj67Dk/FJyQwRZO3RL8E46/KdiKij8WvLhwCXK09tgPBFujvCnM3xL8k4z/SnBmDMx1wQWzZi8uXIIcPVa3advO7wVHWGuUM4VTP76KBk0F45bgf23oAG2C1WuC0TRkBqxdF9wla8CHuSNnzJy9uHARcuJ4w7btu+ctLOmSNSAhgwNl7RhnjrLWaBLljE/GT850BgOAoahg6G19krfiXxM6gKppinFN8LD8mdE0WHHJSWs2TPAzckKGzr365o4aPWPGjJKlS5DjdQ1bt+2au6C4S9YAVgEHGrfjSQuasGEsxuvD8qbI1zrDQTHa+rtvxb8sdAD9umARYFj+TFQAGyHfKLhrr74jRo6eMaNgacmPBDuxhINI2TDWjicxXh8+/pbgn1T8FcGYAA5CcdO6AxcDMYVVbhZcV3sqI7hr74GsAm6cdROcHU86iBSeNm4J/onFXxGMi+AkVQ9jOHAxyGQEZ98o+OSWrV9mBKdU8BBJD8m78JSbSJICjMibekvwTyluEiwBDM+fQYngoVVfTHcSYigmp9TvBZcsXYLUHqvfsnXn3AXFXXv3T6ngw1kfxbkJzkOmKBFG5k2WAfS2EW/aLcH/6tABdM1QjWtfGT88fwYtgZdRfTHdQ0jRuJJSoVtWTu6oa4KP1dZv3rIjI5jTwE8k/TTvJVM+iouJMDJvsnqT4FtX0f/auEmwDDAyvyAmQyCmBGO6hxSicYlToFtWzvDRY2bMKCguWdwmeM78Jd179+dVCBDJIMUHSC5I8XERRo2/JhgAVA3gluB/edwkeFT+tIzgUEz1kWk09iPBR4/Vbdm6c+6Cwm5Z/dIaRJg0GpOCBBdh0gkJRo2ffH047i3BP43QVb3tHJwRzCoQjitoQo3ERDKlcgp07pGVO2r0zJnTS0qKMoK3z11Q2L1XjqgCyvB4vE0wK8KY8ZO0a0ewrim3bmP9BEJXdeX6sPvReVOSMqAJGU2oUUakknJagS49snJHjZwxa+ZfEYzF0kRCjlA8ygjcLcE/vTB+JDilAs7KBKuicZFOKYIKXXv2zgguKilEjtUe37J1+9yFS7r3yhE1IJg0ySooI5AxiZdg7Pi/6AYYBgDouqYAqP/qHfx/PQzQVV27Lnhs/mReBSKpUEmVSIhxTha1jODRbYKPZLoLFy7p3itH0oGMCbGkRsYkOi4KMowbd0vwTysMgB8IFlWgknI8pdIJiU2rogbdevXJHTV6+swZRSXFGcFb5yxY3D0rW9KBSqQTnEEnFCYhiUqbYF0HAF3XpFvdhf/yMAA0Q9cAFCMjeJKkQTylJjgtlpKSgibp0K1Xn+Gjx/wVwbIGTEJIchBntRgriwqMHz/5luCfVNwoWAMYl/8XSYMEp7G8HudkTtAVA7pnZX8v+NjNgmOsmEobiZQaTyqSCuPzJv1PCNZv4Foxb+TvrJiJzA/+fb/1/2fvqmmGbgBoeptg2YAEpyXTRpyTOUFV9O8FFxYXIXV1dVu3b5uzYHHXnr0lHTKHOZMUU6IuavDpuM+vVaJuKOI/IdgA3QDVAMWAa6dwI9Ot+f0vMmrXzuyqqupGmzZZFnU9DaCosgagAyQAEgDKtTxBA9CuLdz25+8Iv6Hk/63lf5qhG7oKoOu6rukwdvxE2YCUqCcELcYrnKSJWuZj0uiZs2eVlJQgtbW1W7ftmLtwSffeOSpAQtB4FVhRTwiaqMGneRO16/lmBP+DlWKArv1AsN72qLMhtz3VrKlgGAaArmhqMiUaAFcuXfa5nCxD65qiyJln0BMAyUyOmQ9uNz64/Y81Bv/d9uMnGDoYOqgSgG4Yhm7A2PxJsgGsqPMqJCWDV0EB6NYzO3fUp9NnzCoqKkKO1R7fum3HvEWFPbP7qwAMJyckYNIaxSm8CmPzJ/3/F3ztIG67pd12BOugqW0P1au6omiyAXrmij3gC5+pP3r5/FdXv7IYIgAIGiRVEDS49uYwAEBVQVWv3UX9O5Xyg3PEP3OC+InE94J1MDSAsfmTBB2YtMbKwKS1pGSIkOls+HT6jFmFRSVIbd2Jzdu/nLOwsEtWP16FIMmGaN5PJEM0HxeNUeMnXb8X/c/d6Lgm+Ib6vFanqq4YoBqgaoasGXJmMUGQjh3a8935nWePbjh3+AzhixnACUBJoKpwrWHXAUBSgZdBMP6rIt3oVf3+/PK/WDBc+7wKugEKwMhxExMSRGJCJCYEyBQaT6dkeLRnzrBRY6fNnFNUvBQ5evzkxq07Zi9Y0rlX37gI9iBlDVGWIGmPMERKHT5uknS9I1j/p6+wrlWmcb1WVQMEBVIa8BoIKsga6BqADtqF8/Vfn9188uiYM0fGXz215/SRQ7F0kId4GkCCa7fYVQAQZEhIkNR++NH8x1Kv/wTzDRcB/8sFt3X4GzBs7OdESnVhCReWsIYoH55MSG2Cp86YXbi0HDlce2L9lh0zF7QNfLcEaFOAMgWoVj8ZTSq54yaLALKR+RKWf26Hrwk2rgvWNRA0SGqQ0IDTQFCh7d4bSUWPHf2i/tjkq1+/4jG9e7pmXP3hcrv/2wQkU6CLACADiJkrLUGGpAScBsoNG/ov1P7fEaxpWqY3SQT4ZOykaFKxhBgXnrKEGA/OJWTo0mfgx6PGTZ4+e0lJGXK47uT6LTtmLSzuljM4roIpQLUEmNZgrMlHRTgYPqHgB9+y84+Wpq1hNAD0NscaqBpwKjAqxDTgFZA0HQyAeFy4fPnM+a8qDlQ/k4z9SeGeuXC639dnP/umscZFRVOginCtm1sBMCQVBAkkra3h/btqM79W/39AcNudrMxb/ZPxU8IpMIcTTiLdGoy5CS6uQtfsxz4ZPX7y9NmLisuQI8dPbdi6c/aikm59n4ir0OynG/1MUyDWHIyjIoycNFu89n1Hmp651v2HQm+rVqPt+kAD0EDRgJOA0SCpgaRoqqoBGBAJE0cObz5V/7m5ZaiYfEJN91H4l2tq+p06v+5888U0KN+PBlYAdFUFVQJd+wfsZtb8Xy9YUfXrgnMnzIjyYEE5K8Y3+hkbmoop0OUmwXX1G7d9OXtRSec+g2kZzOFEayTVHGKbgokwD5/kzeCvHcGa8U/ssAogAEjXj+CMYBU4Dbi0mjAAQAdFANBhz5c7HbZDhw4M0eSJVPAZNfmcxD17sqHHt1eXnr102Bl2a3CtF1QG0EFQ1LbxYn9NsAFyxq6qCQDSjJl/QdohSDsEQdo//cc/SaKW5uWM4HRa/BuF/2kK1jN3siSANMAnn8+I/H/tnXecVNX5/y9ibDEaE/1+E5MYE2vsDUs0mhjTzddYorEAAkZUsNJRmrKAiKEYFUFAUFFRAWGXXcoC29vs9N77zK3nnNvn3pl5fn/M7oIREkAJu/54Xp/Xee2evTtz7r73Oee5pzyjgC1JHGnJnhJdKcybcP4VN/xt+N8nTJ0+q2peBfDqPsCOFLGnREtCrAB+4IlJMoB26GNw5dNxVSj30QUT9MrQWyybUIKyAWCCq7Orq3VTfd307s77Vy397rwpx/5zzomL51MdHdfVbP3bzt3/aGjYqotQEIpgQImYRa1UBJAN4/OA9+HEBUNWVPzY4yNmzppS6aJNA3StCGWQJV1VDAAoFvfpyP0UcKm0F+CxUyqAbWnFnhKdabEP8MQp02dVzaM2V29ZtnL1C7Pmnn/5tXsD7oqTxF6ADzWK3gfgIqhFkEtgQBmgAKCDlBcatq4NutfUVQ/FzFOTnqQmDL9s0sgho+6nrJ23t7T8urXh0VB3o7ct2hMnmaArxTKAbuztfP+K2SxqfZiffuaJOXNnGaYKvYBNA6AMRuHf9NH9FHC5ZJb3ApxUoDsp7Q24km124tRpL82eQ1VX1oNnVX0RcFyCB56YpAIU+gAf9Nmkni66EkUXAYpQKoJcBrlYNKAEUACQwdW6M+L4oKNpjN81lLCjXpx4+uyxj73w96efGHZu7cab05HbGqqvkYLbAw1WKctXIrYygKrK+1q+7GGs66qikgppVRMff+KRb5583DGDqW9961SeI5WXUBVjoHXRJSibFcA9UfR+AD8wfNTk1mdsSQAAIABJREFUKc+/VDWbqtlcvWLFimmzZu8T8ENPTKgABgAoFqB8sHMdpcrDyV6AjTKQMkhFw6xETBlP0tv6Sdg1p6PlFlm8i0vfOf+Fc0b/9e/3/37s0LuvqPnkNzr7C1f9Dx3rx0LStWvTJwAgGsUCAIAJZeM/RkmmWaj4NCacaRZWrFh16SVXSqLWF2QVi2VdN/b36wdzs/8FK0HZgGIBegEPGztpn4AfHD5yypQps2e/SNVUb6oAvuCya7gvdNEPPTFBAzAqsVBRP3jA0PMcvKeL1suAAEjJLIIBIENbdZ0Q39xY+3+Z1LWKMoRL3/bS5LPu/M3dt93w4K03ndm2869S9Gda4Jzdb14qOVdEHTvTdEqEogwGlE0o7hdwqVTSNA2gZBh6qbTnUapQMK+4/Jod23dDGXow/7uW90/AOpR7TxeOnZSSPwdYMOHCy4dUAFfNfpGq3bxx5YrlM2a+WAFciaL7gqyhj+8F2NShrB/KPZf3BqyWgQcgUAbQIe3M23bUZb3L2nfdLEsXiOL36MT1Tz866Fe/uOqmG395w02Dd9beStu+V/Scnqj5Scu7txYly9aGLQKoCphgmmCUobTfZx5N0/qe6+LxKEDJNM1isXzG6d/3uAN9UbSuG/t5+uufgHUoqgClXsAT9g6yXClcATx02MNTp0ya+9LMLwIm9pS8B/AT4zSAYgl6AJcO3oN7455yGYpQMkEtAimDDCUoi+WmTXVirKG19iGJ+bPAnaIr3zHwLx99kLr6sjNvuP7q++49Y8snV5Tj50vtVMHygx2vf8e1c0Z324Y0EzWhVNo76PvC8l8f2mKxmM/nX3755WLRKBaLTz759M9/fpNIVAAol/4NXeivgA0o6n2Ah38OsOxK9Xnww1OnTKqaPZOqqd6wYsXy6S9WXXDZtXwBXEnFldbtSdWWJCkFho8dr0PfyQazJ1XxgVsZKnNNBQkKBShASSyLBTAKpSIUoaluNxduaal+yt58k4GvzSUpHZ+WD5w7/A7qjG9QZ516+l9/c1Lz+mvybSeRdkpsGszW/3TT7HMhWW3ftBFU0EDHIBtQLJUqo0DZNHt4GIYBAJqmAQAhBAC2b98+ePBgiqJuvPFGjuMAQNf1vitNc4DsNSsDlCrLcL1d9JPjK4CtKdUal+0JiS/A+Zdfe/+wEVOmTJpdNaMH8LRZsy+47PoewCljP4BLPf3hgVvlgUUuQxH0QlkpF3Qwka4VAZgksdRvSTnf7qj9E4peL8S+kw9QfOSboY4f3/Mr6ruDqB+ddPJtV1DVy89L7vx2aiuV306lq0+2Lj0z9vHDqGlbqM0pgp4FUgCzz1n39lrTNCuAi8WeBU+EEABIkgQAqqpWKjHGX8Uf/r9lFRDFEvTOzw178rkK4O6kYo3L9oTCFeD8y6+/f9iIyVP/C4DLAAaUJYAyFAG0UqEAoOoARejasSvW+XHjurvSXb9gnf8j+o6N7qKY7tPS3b/+/fXUSRR17g9Oeviu07q33C603xLbfHq85hTvx8fFPvvRlgVnp+qXdtRujsssC1CAz02glsvlL86nFgqFih8XCoVKqShK5UcV7+/7tr/bvgAnVehOHUHAlf02YBRBN8EslMpQgoQ32rJpdbz11fqVF0nOy7O7KM0yOFNNic3fTzUOGXE79T/fpK65iBrzIFW/+nzfx+fGPv7fzObv+D6g6K3fal16Sv2S/4s2rW9sa6o8CJfLZcMwSr2LIXt/UXHiPpMkyTCMSrcMALIsV76ogB8AdjCAJ02ZePgBQ8k0JQBJg5wJvAFyCcoFsdBU84lzx6sd6/6S2nkVt/uMQsupYs0xUH+mvu1/UeNplk+PXzP/5DULvrPl7UHRmlOzH59o1p6OPh2UfZcin1GZtdSOmWcF1s3s2ryZSYiV9pim2YftXwZUTdN0XS+VSv/i2X3f9nXXA8AOE2ATDhmwCaDrBlcEXitzhbIBABGXc9fG1yw1o3evuZB0/ExuOlXbcZK+5QSo+x9pw8nZTcda1x63+Flq/hiqZglFGs9E60/IrqC4dylmDUXWUZl3qNCyH372/JWRbWu7t+00e+eh+sbaijtWYijYy6Er/bCmaRXkfYAH0jB8mLroHo84FMAAZSjopcpMVqkIPKM0bf20sWbmzk9ucm49K9vwbbXjZGYTVdp1EvmMIpuPE+uvnns/9VOKuux4auKfKc+7F0o15yZXnZR554zsmlO5j6nIKord+L3PXvx220ePN9csjQSsFYR9gPvQlsvlYrHY1/3qut53DQAYhqFpWp/fDwzrj4BLACWQSBFKUDKgeVdT9aeLt3/2+M7PLot1n8d0fS9ae4zaeiZTe5y4mxJ3ncJtvWn0ddQ5FDXiugvmD/1+w8Kz2c9+Knz6g9zaCzPvncuvPyPzwXHpj06NfPKzd1680NOyuGHHRxUXrKAqlUp9gE3T7GPfNxiXy+VCodB3TQX5vwzV/dcODfDKlW9Pf7GqAtidUj2ZojOtO9JSWoXhY8f3zmQdapBVgqJamR4xc7nM9m0ffrJuypZN92di9zHRm3jfNYLzasEyBHVdimxnku4fl+2/2/rKpc/94UdP/e6HH884P1MzxGy6UKr9gbTlBqn61kLdz8s7fw67buRrf9G59refLr1/e80qh8NRATmQRtNDsy8AHjr22YQCliS2JGR7UrVECC7BTy++ZtioRydOnjBn7qyDAWwUDwFwWQMwwdTkcln98KPVW7evXf/JSxs+Gf3x2l9ufP/K6jVX1b5z7bZ3btnx7k271l3cuO6S9g9+uW3Zn9cuGvHeP4ZvfOPWnSuv7FhzjuWdCzpW3tL61u9bXv915xu/7n7r123Lfle97I533xhRt2lNfX19Lpfre0/TNL+2pA8j4PIhAS5BifRu+YHSunUfupzdbke7s3tbyL4pZt+QslXnHNs4TxsKdpB4s5hpwelOCXmJmULFKFLaEFcr5TcpuTomXp8ONiQdu+KdO1Lt9THrTq93p93f1NbZVF9fHwgE+qAOsGH1oOwwAS6WDh0wFABUgCKYheK2bXUrV7699I0331i0ZMWSN95Z/MaaxcvfW7Jy7evvr1324dpVH6xd/eF773687N01iz54/dV1/1i6btHqdW+uXfv2e++vWvn+yuXvrX571dq3l36wYvEHSxevXrD0jfnLFr3z3rsfffRRIBCoRMV7D7dfQ+t3gMtQ1soFsQBlKJVKZTDcPku3rcHvt7htXZ7uLq+ly2vpdNlaHY4Wm6vF7uq0WhzdTmtbeHtLtLbdW2+xtTq7XU67p83R3uHpsLtdHmcg2B3zdAc73R0d3pbmjia73d7nvqVSacDMWhyC9TvAPTs6jHIJDKNnwV9UMwAIQIdSZZdlEUAyAGnAF4BAuQRg6MAowJhg9OwYKIJUkiUgekkr9e7jM0DUAZd790WXy+Wvs+9WrP8B1kuQA5BUGRQZFLXy6ZpizznBYu+u1jIUwSyAaoACJQOKhlZUlLLZkxNZAzDAhJIOes/xpJ7DDXIRJEUTEUKlz2/a/to68SEAru0FfP7l13MFcKVVd7Zoz+iOtJRRe56De4KsQ8l0pwNwqs6Ui1A0oWCAqkMZjBIQqPAzejbGFwEKYBbBAEOFYs/pUDAAFAAFwAADTB10wyz1njstAShmWQLYM0lZmZH+/yzIGpdQwJIQLQnVntT3Abhu84ZVK9+e/mLVeZdfzxhgz6iOXNGW7QE8YkwvYIBy8RCSZO3Z+N53dOVfjjtUGl0GqBxT66mv/COVexfdey/Yc5Nl+Nx5sv9PrM/TAArlnvXgpAyWqNgRUayxQldIxCX46UVDho0aPWHSc3PmzvgcYNoEW/ZzgEeOGW/0Hj7be57vqB0Z+yLgsRN6AavWWKErJFcADx356IRJz1XNmX4U8ICyfQFOyNAZOwr462FHAX/N7Sjgr7kdBfw1tzJAuXQU8NfXegAbcFCAV65Y3gfYmlFsGaM7rdqSJK3AyDHj+7IVlQ7piP9R+yqtArhoQt9Ex5jxcQnaI7grptvihiWskDKcc/G1w0aNnjh5XM9z8MoVy6fNmn0U8ACwHsB7zWT1Au6MakcBD3z74lTlXoD37qKPAh6Ytn/A/zIGHwU8MG3/gNvDSndU7wxKqHgU8MC1/QNuC8mWiNYREPcGPHfezKOAB5R9FYA1W8boTum2pJSWjwLuZ1ZZWi2WoPf46NAx4xMStEdwa1DqiKgVwD/52TXDRo2eNHncvHkzqbrNn65c8da0mVXnXX5DvgDdKb07ZXYldFtCOQq4P1oZKqkMKxnDhj8+Lo6hPSi0hKT2qNoaFPki/OTiIcNHjp48adzLc2Z8EbDRnTK7EoUewE9MOAq4v1kfYBNg+OPjkqgHcGtUbQ2KXGkP4PlVRwEPQDsK+GtuRwF/ze0o4K+5HVbARxkfcSsdBfz1tj0f8X5AgLdWr1+1ctn0WXMqgC3JQnfK7IzrjpSWIPDI2ElaEfo+N7hcPrrmf8StBFAqlaEIoJdg1JOTYlyxK0Ia/bg5LDf7MbvXc/Arc2buA7AlaXTGdWtcjqHyqDETFWNPuvejgPuBlaD3Y89UE0aMmRBlzfagcNCAbQklKcKjT02pePBBH2k4aofTKkd7tCI88tTkOF/qDONDAZyS4NGnpsgFKAIYZqmS06R01I6oVTK9VT62QTHg709PSSLoCKG9AZ990TX/GXBnGMcxjHxiAi/qRNExkWRZJoRIR+1ImyzLmEiiWuBFvdJFt/jYQwGcIDBqzEQGKTyReQFjjHmeR0ftiJogCIQQXsCCqLBYHTFmQowrNnuZg+6iLVExLcOjT03hiCaICsKiJEkIIXLUjrRJkiQgIogKR7RHnpqcRNDq5/YLeHv1+tUrPge4M2l0xvWOEEqKMOrJSQxSOCwJiFQA48NviGCeYE7EnIgRwbKAJYQ5ETMS5glGpHKByIli5QKMBYwHaNlzvwiLPOkRwmLlL4CIQLBAsICIULlrjHEFMC9gDksMUkY9OSkqlBu87G4/bg6rTYEvAv5sw+oVb0+bOfe8y2/M6tCV0NuThdao2hGV4hhGjJnEIp2IGs8jERPy3+Ar8kTMyzij4pQmcKJgsoLOCRlViBUEWsY8wYwk5mU5pcoZReREAREOkQFaCpV/VkaU87Kcl5S8pDCizEgiLQucxEqYlTDLixwjCRX2GGNRFCseTGN95NjJYR4afMJOP9kZkOs9PF2Esy+9dujIRyePf/aV2dOp7Z9tWPP2HsAdSb09abbE9glYOtyACcKSIGIs0pKYUXFGFRARIMcBzWVULlYQOLHyH40ZScwqYl4WeXJ4m3RYjSAsIYFgAWGRIzIjyowo80TmCeYkDomsimhNoDHheFHAWCRIJAiLIu4FbDw8dmqYhwYfqvdLOwPyDi+fK8LZl1y/B/C2TRUPruoPgCWEdVbUOFESREQwIoLGC5DmIMMhwjEyq/NsmWFNltM5TkYcQVgSFInXBqhUTi4xXO8dCSqPVR5rHNZ4QRU4nWdLLFti2cqPNE5WOVn6EoBv6A+ANU7UOFkSRIJEjLHGC5ARIMdhwnESa3AsMHSZYU2W1XhWRpwkyEec05cCzLLA5EosbbKsznEaL2i8oPGcxnM6xxkcZ3CcxmGVFzVOlnn5y3jwkQeMMcZYrEQcnCgyEkZEMFhB47msymU0lmBW51lNoFVEY0IjkcaEw1gYoCKYUxGtCTkV0TJiCWYR4XiR40UOEY4XBU4UKoEkwiJPZJ6IiAxwwGhPnIwZSeQJlhBGBCc1nNQwLwqyIMiCQDDHSRwnsUhkMWEx4QZmyWHCEcwRzGHCVYIpWhZoufLUIGYUMaP0hNa9Tw3CAAZMsCALgipwGi+oPJYEkSAZI5kjSlLVUorGY00SFElQMJIr0SbGgoQ4CQ3IkiCMsMxjBSMZYZknciWcpiUZYYUjSkpRMoosCbLKYwkJle5qYANWBVbnWZPlTFbQOJkICi0WUrIZ1coxBfIEOAQ8KjO4nJGKKblIiwWGaAwZkCUtmhmpnJGAJmVaNPOimZUKSaWQkQs8MhliRjUzoWoyLxssrvThmHAHB3j75o2rli97Ycbs8y6/IVeAtrjaEtObo0p7REwQGDl2MiNoCCsIEYnIWDi8hAnmigWRTYZAEIAnKitFEwwP4NTAX4SmpJw2IKVADEFcAa8EAQN8OoQMcEsQMsAjQ6QIHhn8Gvi1AVDv08CjQ9AAP4GkBiEJEkXwqGZIB2RCmDM9JXDKiohUk0MCnUIkKyCGEFSZqqSxMXzMlBAHuzz8Dp+4wydu93AVwMNGjZ4y4blX58zsX4Ax4bCUF4RkSRSkdE7iZMGERiTP2dX6yNK1I/6x+i8TX73j6XkPT1/6wAuvPzhv+W8nzv/NhAX3zF7+p+eX3Db+lXvnrPjLzDd/O/HVe+esGBD198xZdeuERfe8tOKuyQv//MxLw19aeN+Mub+fNG1o1at/e3LmxCXvLOzoCgPEMyzJ5QFUotE8pgcwYF7kUnKa1rKaSrhsnhUUFmBGU/Oda95/+L3PFnaG5253vLLdOXezZW6NZca2zlctoZebvTO3WmZt657X4J651TJ3t2teg3t6bef8pgFQ/3xd10stkanbHVV13Qt3WufWNsxvaJ7b3DarbtfSrZYZH23949Jlk3ZuEwDy2Ryt5ZNSgh3QgDlRSKv5nJJVRVTACsfpUQPueGvZiK3b/+nPUN+/tFEE6vtX2FWg/vfiLgDqtB90l4D6n3PsRaBO/aGzDNRpZ1l0oE47y14cCPXf+UkLAPX9S+0mUN8601UG6vQzGstAnf7DgAK/GDX52eb2m+fP58tgqsUwE+HKAkMGchfNi0JeYnnElGgRuJKa0ZMIbp01b5bVTZ3y46ABTg4EgAQHcb6cB/ATNcRJaaKlkcLq5QQn5hUzLxV4A+Is6f/1tAl2BH4ZYgh4DaK8mCiYHrMcA0AqdETN6a3OX7+0QJTAyKiKJmdxjh/QYzBPcAYzRBKLWQnSppkqCSr8aubcae3WLhmyBqAy+GNExlA2IUFzrCKXyoCxWCpCNpuHMtA0qypGPs+USwOgPk0jCSArQskEJsUAQJJj02Xw8ToSgDrl0mmNjltnLeLyoMcURdGyOM8jbgAD5kQclQS2YCg5tZg29DzkNbixat645jbqjJ+GMMQF0wSQGZFLplQN8QqTommsGzkkIq2Q4TGvaGkOSWYpQXP9v14sliOsgHVDYtiSKCA2yWuCX+JyAEQEPwvPNdhvmfemqIGSgTgtCFBg8KECPueKG3IFaItpPYDDcvxfAYv/BcBJTczrOqIVkwNNAD9fvq5q4RSrp1Ms8yakOCnHCioWwdQRl+JxTtTVJMPlscgrWg4RTlZFo5jmBKwb/76eU7UsJpwiy4aR5ThR15MMlyMiq+oZLDJKgRiQ4ggqmEmGY7CAFCWLCatoornn+iyRWFWvvD42S0keVa4/wPakeAEV9AydV1i6hBnCJwWVpUEPYZLOFKjTL5nYEbp85mu0BgoHGSxnVMwi4SABV69/5+23XphVde6VP88VoCWmNkULjVG1NSzHMIwcM5XGukDUHsCIP6yAEcG0yNMiwkghgkYEJajAdS+vfrYpdOpFN+bzGMmYQTSDcY7lCBZy2TRCSOhdWf2PQojIsooQ4QSeJ5gWGI7P6wpWCS9jXpJIKBHDhikUSmmkMMTk5SKDJAHzXD6mEpZFmBcVVSGIy4iIkRQxgwiraJzAsjyDjWJGkCqbIw5QHCa0SFiCRIFXeFYUWI6wGRnlJEkkhYgIT+0KXjt3TVIDBZlIkjlRQIjfe6KjAninm9vqRts8eJub3RvwgqoZnwOcMXoBR/QK4IfH9gAWMBLFww4YY0HAvIB5nsg8kTEWAwoMmbf22YakI1sAE9KZWA6lFYA4wymSrokqQfigxDE84oVIKAxgqpKAmHSpgNNxn0wYhk4Xi8Yjjz2+/J33YlmBFs0kTfIcAigpmJGEPMZCKpW6/Q+3rXzrNZWwkbDfKEOa5jAWsEiQZqRYAWHxwBtTWdjmRJEgLCEsIQERgZZERhIVSf7GD86f2kVfNG1F2gQ2jwghiHBfBBxkvzrA6MgBPvGsK6EILJdlpTwtySkeZdM04TDihQM3HglYVfMcW9IKbCym5LIrX180aBBFHUdRg6n3P1z10Xurv3nM4GOpY44ZfAJ1wskrP/qYRYLVbqMGHUsNGvy9M759LEUNoqgTTjhu8OBBJ554/GCKOmYQVbe7KZDM5XmsFIyDaI0g8EjIE8xgjHiB8ALhOR5xOYLzBLM042HViW2ZIfM+DGBgcgLGmEfMVwa4JST1K8BRCTKxVJ5Opdg4q6hpAeuqmU1kBI4/cOMEPsOygkjANNhE3CTIlLlQyHbvA7dbnc0en+XREQ/ymZSQz+/evfuGm3+VZDiW56xO1623/9Ufy6SiQcIkGSaf4/kMzTFMHnQ8c9rkjVt3sjpkWSHP0AfRGp7nBD6HEY2QwPGY4zHHcgKbxSiLkUTEb/zogqd2RS6atiKqQEEtaZomKfhfAA97YvLXBPAJP7rCVAosl+VkOi2gHJHyWbZcKGHhIPacYgHxNBMNR2iBYUU2TSc5IRX2dM2bPh5nw7feeOXNN19DDaaOOZ6iBlGDKeq7p3578uTJGYbPSMU4S4qmpmBGlKUMj7BSyDM0plP5TFzQihFGZASE0MFtKxYwokXCEoIFJApIFHgB83mR5EWSTWciCkzpzP9i0caIDAIrchzHCfRXBri/ddEpHdLRJMfnMnwyLaAUjySislmGpZkDN5ZmSgWDIByMh4kp0TjPofRTo4eeRFHfPY5atmTu3ff8trG1rqFt+7Dh96mIXji3auwz45Ysf4ca/E1q8InUoGOoQdTg40+gBh1LHXs8NeiYQRR17LHHjB0/iRa1WDonYESzB9EemmXSPJflOJZmeJrh6TzN5lM8l+I5Jk+f+JOLx9aHLpu1OqZCQS0hhATMfm3H4P+95JZ4MMoL+SQTc4Yj0TwTDsbCvlA8nowdjOxulyfgZzjaZu9KJSPvv7/8+OOpt96cP2L4X956Y+4tN1x8HEUdR1HfOo46jqK+cdygvz8zvt0TYUQlkEgnBDWU5eobW/5y151+vzccT4RS2axAbA57MBzKcajb448kDqIxkUQymEqGk8lELJ6KxVOxaCwRDaSSgVQyHo0FiPnYVt8NCz5xMUVdKQqC8FWOwf0NcFsY5RIZt8fmi7n9yZQnlggForlkNhKJhQ9YwWjMEw3Fs+l4PJqMhuIh31/v+tMfb79l8etz/v74A4sWz/rzb663Nm5prl0/7J4/JsP2qnmzRk+c5kow/kh8/sIl46sWOlN8c4fl7rvvjISDeY63BBLd/ihDZ+KxUJfLm2RxMJo4qPb44rFALBYNR+LhSDwcCkdD3njMG49l05njzrpwSmf+6jlrQyLIRCeEYJE/aMBbN32yavnSCuB0AZoicmNEP4KAsYgQEXgiC6JCiBRU4eo57z1ZHz3z8lvtndZUOuqLuZ3hSDibDwWiAbc/FIoED1j+cCSQTLiD/nA4mExEkrGgy9X12JiHF74+96GH71y8ZPZffn/jSRT17WOpEyjqhGMo6hhq9MRpux2hcCLz2z/dsba2odkT293edeppp5x00gnUoGOowd/82TU/t9u6PG57LMdYfVF/OHZQ7fFEI75IJBwMRYOhaDAQDAfc0Yg7GvF7fS5WGVXtvGbuB3ENNNkkhBBJwHjPRAdDzIfHTg2yUO9i61zCVjfa6mKyJvz44uuGjnx0gAG2JGQhzwVDHkfAGqMZqz/osLm5HBsOR0MHrEAkGk9nbC63NxgIhPx5JuMNOO++98/zX31xxKh7R49+8Nqrzo/6LY3bNoy4//+SQdsr86tGPTU+xqv/eHMldfzJVUuWueL5xs7uP995V7fVHo4nXOFEl8vLcKzT7bL7Q5EsG4jED6o93ljUH41GQuFYKBwLBUORoCcW9cSiyXjiOxddM2ZH8PpXPk7owOYRQojhcvsEvMPJVADXOemBCvj0n90U8YU8Xnsg4XWEwpEcHfCFvQ5PMBTzhw9UwVCsq8Oay9GBZKLd5+wMuEPZ+OOPPfINivruycdddekFk6Y+7Y8663asv/OOX2f89oWzZz76xJNt7vB51/7ytdXrvvWdM4aOGFnf0v6bO+6MZPKpPBsM+v3BgM0fidLI6g0EY8kDb4w/HPOFY/vzYK/b0xhMv9DNXjJjVbIAIlJlWdYK8pcCnNL3AD5Sj0n7A9wVlwIuXywetLg7fImkxev3uPzJSMLrC7n9ByqvLxSPpqzdTlc4ZA8Ho0y+1dE9dPhDixa+6uju/PPtv9++szYQ9TU0b//rXX/61bVXfHMQ9dprr90zfNRzsxe5EkwoFHj8sUcGHXci9Y2TqGOOp75xwmCKGjx40HW33d7ijcdzvN3tOfDGuP0hlz/kCAZcgYDf6wt6fUGvx+v32IMBezCQjCd+cPUvHvi44+evfupHgHlZkqRsPvUfAWeMgQn4lHOuDbh8dkeXP+5psdk9sYTfG3J2OzzeoMt3oHL6glZ/wB2OOl2+WDTV0d7d7XCGs5nucMAe9gdT8Vgs0t3WFrTbmGS8va0xmYranQ53OOZNI0sg4fU4oiFvU1u7PRCN5riG1g6XvSuVSjhieUs0v7vD6jzglvS1xx7wO/1+n8cb8HgDHrfH57YF/LaAv7vLstufnGEXLnx+eR4A8zIhRNWlLwW4P3fRHVEScPmisYDNZ7EHQ+1Ot98bSoTjBwvYFgh2+/x+X9hqcSRi6TyHtra1N3pc7X5ft89rsVhziZS7yxp0uzOZVJfd4g+HbG6fK5xo6LCEw8GA322xdntDUavL6/YHEomExe5osDht0UwwxXijiYNi/G8AB/2B719547AN3de+/FFlogNjfCAePFDH4NPOv6G9sdUfcPnjnoYuiz+ZjkclpquBAAAPd0lEQVRTXa2dbk/A6T0I2V1+pydo9wQimXyz1b69pS2SZTvdXk8k3u3xO7zBDqvDH451dXW7HG6Px+cNRrps9lDQ63RZXb5gKJ4KBAIOu9XndXu8/lab2x6IekNRlz/U6Qk1WJwOb/DAG+PwBmx+n8Pn87o9frfH73a5vS6r32f1+6yW7o4E+/Tu6EXTVsRUUMSCoiiSggc64J4jqgjLAlF5UQ2p8IuXVkzY5tvpyUUimXZLl9Xt7HJ5Oywuj90XcoecDq/N5ba5Dqh0OL1+X7jb6my2WDvdnnaXp8XudATCHVZnZ7fT4Q1avX5nONLU1R2MxhwOl9Pp7rI5faGgzdIWj/hbu6zdHr/L5XBau6zdHaFwdFen3RlJWO229s6ODqfPHctYXb4Db4/N5bW6vDaX1+Nweu12j8PqdNq7PO5Or9cRCH/jJ5c+3xK/bvqyqA65PC/KhOMPPoretvnTvomOyhjcENYawtoRWS4kCMuCKAkyIYU80jKikS3DH8ZXVW1sOvG8q61xrsMb63CG2jo8EV/GutsWd0W8bl+Xzdpls3uDgbYui8vndfn8FrvN6d1nvcPt8XXZ7J12uycUarVYnH6/0++32B1O7+fqXT6vx+e19r5Ot83iD/rauixOv9/j81rt3W6vq8tm7bQ5PaFQW1eny+d1+v1ddtd+3nd/7XG53WGbxePusse9Hnt7i8/rtAX8DW7/zkCyOkBPr+n80/TXQhqkBFFSMMb5ysZ3XsC8qNCiOfzJqQEWtjmZWidf5xL6xuBho3oPgPc3wAqSBBrxWOH1cqYAXskc+uIri7c2rfcmtye4jc5oc5TtjvEtjpgvSHc5Io2uYKMvvMsd6IimttnczYFogzfU5I/s9gyEel+0wZVodSda7QFnMNxk6ejyeXb5AttCyW0Zhbrklhc2NP9l2iK/DkwROMJLIo8JR6R9A97iFuqcdNr8EoD/C120KGIeCYwspVU1YpZaefHxZavGvPfxpWPHfUijb/z29pWR9Gm33/VhLPu9P9651p/49m/uruZK379z5DJn6pwHx74X5k/81V0bcvopv72v/9evzxkn//aBzVzprDuGrrZ7L73/oU+DkVN++bsNeel/731s7CctM3d476xa7i9ChBgMqvz9ha8G8BFbLuRpWcFIISGWieoFV6H4WlPbA/9c+tSGmlHrNs5ot01p7nzog08n7W6b3tb9XF3jlLrOx9bWz9jumljdNbna8vSnzXMag+M3dUzdYu3/9c9u7npum2v4uobnd9om1TQ+v2Xn+E+3vNxknbC5cVx15zMbu/7y8tr3nJwDQxKXCgaIAiKfBzxs7JSBBJhgQcglDMKpIsozNKvqLIBdUN/Y0TZyyco/zHjlj3MW3zx9/h8XLP39gjevmjjrNy8turfqrftmvvGHp+fcO+P1OyYsGDrn7f8b/8ofnpv30IsDoP628a/8ad4Ht81974YJC29/6c3fT5l3/8tv/n7S3NvGz/vTtDeGLvjwjV2R1nSZNUDgTTmHQS1I6CsCfES6aAkJCpcrcNkC4jVCkCDRvCroECOQ0MHClnwGOHSwGdBlQJsKUQALrSULENcgWYAggYgMQQIcgD2n9P/6PEATA84yeAwIFMErQUAFrwRZgKABXhm8GDIqmGXIhjOFTA6IKKOBPAYTLOiE1bi8xjElSSZZDqexTBdMGTQROAZYDiQdYhlTAWBVCORkESAnSUlByMtyhhBW07KiGMhk5AFRn2aUItAC5PJFJBR5VhVFgxG0YIrL4iKrAacCzascw0PRQCE3cBkZsQMYMMaCwOcxYhCbVxCSaQQqaDlZSUl6Ri/kTRBATKlFAlxKFllTwgVGQBkuk+XyaklN5tNEJ6IuC4pAI7b/1xNJlGhRSglKWgDZIIl0iZCiJEtE5HiCZF2QVFFVWCZbEBlQaJWLS/ggAferiQ6e4LwiZBWBlntyU0iCqPKizsoGIxuMbLCizoo6hzUOqzyWEO7JbUDkgVhijDWeNTm6xOZMLmPwGU3IyDiHCctJHC0LeUXIKwKtsJxMIymDxQwmLBYRxyOOyHliDBs7xc+UtzroGjtb4+JrHfl070THxAnPzu9vM1mciDMqTqk4o4iVPBUYYwlhdU/uGVZFtIpoGecknCOYxVhEWMFIG4glQaKKcrqQ1IWkhpIqTss4TUgOifQewDKmZUzLAiNznMQhIgxgwDzBtCTmZZGWZE4Ue5L3VbJwYFbCNCE5LGZ4Oc0pSUZN8lJOEkSV0zS2MBBLmZcJoZGUQVIGiTkk0rzI8qLAibjH0YnCEY3HGo81hAoIKxjjQwd8xJcLEcGVXCQIyxjv2e8vIa5CF0kZXspwSppRk7Sa5OSchLDGKgNUsiAiwjEyzcgsI3OM1IOWJzJGChEUImgSX5B4U+KKElcmvImxOIABE4RlXlY5WeVFlRcrA63KC6rAyYiTMEtIT3osXspxco6XaDSQ82RhLPyLv/JYwUiRBEXlFI2TDUYxGMWgCzpj6nRRZU2CvgTgI95FVxYbKnRVHstCjyQkVHI6ks/9dXBvVs8BLcwTke+hqyGkYaRIgqxxos5hgxVMBhusqLOyymkyrxD0JbroIw4Y4z1Z0D6v3jy7WKkcPJT4St+lESQecS/8csK4J4udzBGFJzLCIsGChFkZ51SUkXFGwjlMaF48pCCrdtP6FW8vqwDOFqA5IjVF1KaI2hru66INQVQQQpKIMWIJFiqudpjK3vx9PVn8elUBLPcEn4Im8QWZK8icJgkHcZqv36ovgWMlWTQmHCG0RDISSRMxjcU0L2UYJcdJLCacSBAn8BxR9gB25rfY6TonW+fI5Qz48SVDho78+8QJ416eM4Pa+MlH69evHz/phYuv+QUBaPHT7VGpIYgbfVy2AA88NiGHC3qhxDL5okxEJidjvpJ+7jCVIkFkHyIi7pMko72EiYzRF6UQvE/t8+JD0MG+/v6ur0gi4h6JWBKxQgRF5CuSRF4SeVESJFEQebogk2w6Q+RCmlfv+/tzMQJbLIkN7dGWEK7rCnNFOO+yIXff98D06S/Mmvk8tX3rtiWvvV41/x8/PO8y3oQWP93g47rShiWpRUS4c+RzWbGMFVNVdcLRksAiXhAE3P+FEDkofVXvy/Non/pqbooXdFGUeF5TTVEFRoW7HxkfRNAUwPVebrszvd0aYXQ464LLHh3z1GNPPL548UKqunrL0rdXzVv4+vfPvzzMlxzZQmNE3B0Wm2Kak4OnZr/lzigJvoDUMotEnsiCVOAkc+CKl4t7a3/1/1H7e31WNPapr6TxglSgOZJjCC+XE3zBnVHGzHqjPVnYZM3WOHI19kx7BPto7exLh4wa89TT48bPmTeX+mzTlnc//GTmy4t+dPG1GKApjDuzxWon15aDLhpmvLVx5ORXhz09495Hnn183LSRYycMe2Li0DGT+48eemLSf9SDj0/s0z4rH3z8oG/qQN53b31V9zty7OQnxs/8298njBxXNXrakpnLPmtJlXaElU+7MnVuZqebZkpwwZCb/zps1PMzXpwx80VqW33j0hXvzpi3+MwLr8YANdZ0S6JQH9Y3ubFThoAGHZlSSAYvW05r4GMKERHCUj9SSPwPChIIEgjgHvlRj3wC+ATw8oeoyq8fuPre98soIIAnqyckcOVLfgytiaJbhE4OPujI1PmkTfb8Z51RBPDTK268d8Toic/PeGXhEmpL7fY1H3xc9Y/XLxjyy1fe/sQvwA4/bkqWG9PQzkB9WG9KmE0xrSWmtoZJd0pvCJPdYbEhJPaTclcA7wzi/ZU7/ag+gOp9wg6/sMPLb/fx29zsVg+71cXUuZk6J73Fma915Lc485u705us6QMvq62ZzbbMF8saW7banv1iucWeq3HkvmS5xZHd7eXrrJktdrraxlQ7hU8tdG1A+cyFar3iRy0hZ740d9mH511147DRY1+a90rVy/OpmpraTZtrF72+/M4HHzn/ml95aaM1pjRElO0BaVtA2ewUWtPl9nSxKSLv8PK7ArgppjXEtP5TNkSUXRFlf+XusFwfknaFpB1BsT5AtgfIdh+q8wrbvEKth69zc1vcXK2LrXGxm225z2y5Ay+r7flN9vyBlzUOerOD/pJljYPeYqerrbltbn5XUNkRVNd1ZD6zc5sd/CZrttaetqfkn1x10y//8JfHnnx20eLXZr30ItVt6Vy9evWy5avGT5nxk4uHvP7uxpAATQGhKSw2R5W2lFnrYtsS+lYXY82VmsJiU0RujKr9R7vD8v60KyTtCkk7g2J9gOzw44q2eviK6txcrYvd4mS2OJkaB11tzx+UNtty+9T+rq/pJfRltMVOb7FmG4Piho5kvQ9/2pHY4cdbXdxWB73VlvbSxj/XbDjn0msffPiRceMnTp/2/JtvLKFsbc21mzasX/fRq68uHP7IE2eec0nV4hVcEewJ4syoloTc6OcbfUxHlHTFpZYg3xxEA0KNfn6fqnflK9rhzO1w5rY7shXVWVMDQ93JemduhyNb3RGt7oztdGWbvUyjK5WWoWrxiguvvP7mX/9u/Pjxc6pmvfXPRW8tWUDZWhtqPl334bvvrFq+7JVXXh024tFrbrjl7J9dtXbjtg5fUjBBBOCKkNeBNYEvAWMODOUL/045vUdZrUf//voDF20cZhUgq0JaBroAIgBrQocn9f6Gredeeu0VQ2685de/ffrpp+e8OGPWC5NfWzB7+ZJXKFdnS3fzruYdWzev/3jxqwveenPp8OEj7r7nb+decMlFV1532ZBbzrvsurMuvOrsi6457/Ibzr/i5+dedv2A0DmXXrdP7e+yH//s6q9EZ190zWHV+VfcdN7lN5590bVnXXjVeZdef8mQmy++/PqfnnfJLb/8zbBhD08YN37e7Fnzq2YtqJr2/tuvb/roHcre3tK2a0fNp+s2fvzhPxcuWLNyxeyZM+bNmTtlyvNPPvXc0BGP3PfA8KEjHxs5+sn7hz1y+5333ffQyK+H7n1wxN56aMTor0RDRz52WPWnO/72t4dGP/zIk/cPffTOex68576HRo4aPXbsU+Oefe75SRNfmDzhxWlTFsyd9daSBe++/c81y1+jAh63227bUVe7a/u26o0b3l218q3X/7lg3tyZLzw/Y9r0adOmTZ06dfLkqZMmTRk/Ycozz0549rmJA0LPjZu0Tz3z7IQ+7X39mLHPfCUa++Szh1XPPDtx3PgpEyc8P2H81HHPTRo3bsKzTz/zzNgnp06cMH3qpAXzqt58bdGqt99c++7KdR+s2bRh3f8DSLXbVIkBIGcAAAAASUVORK5CYII=" alt="" />
任务
补充右边编辑器第7行,编写一个函数,实现二个数的差,函数名为sub2。
1.定义函数使用function
2.function 后面是函数名
代码:
<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>定义函数</title>
<script type="text/javascript">
function sub2() //定义函数
{
sub=5-2;
alert("5和2的差:"+sub);
}
</script>
</head>
<body>
<form>
<input type="button" value="点击我" onclick="sub2()" />
</form>
</body>
</html>
定义函数
5-3函数调用
函数定义好后,是不能自动执行的,需要调用它,直接在需要的位置写函数名。
第一种情况:在<script>标签内调用。
<script type="text/javascript">
function add2()
{
sum = 1 + 1;
alert(sum);
}
add2();//调用函数,直接写函数名。
</SCRIPT>
第二种情况:在HTML文件中调用,如通过点击按钮后调用定义好的函数。
<html>
<head>
<script type="text/javascript">
function add2()
{
sum = 5 + 6;
alert(sum);
}
</script>
</head>
<body>
<form>
<input type="button" value="click it" onclick="add2()"> //按钮,onclick点击事件,直接写函数名
</form>
</body>
</html>
注意:鼠标事件会在后面讲解。
任务
补充右边编辑器第15行,实现如下功能:
网页中有一按钮(名字"点点我"),当点击按钮后调用函数tcon(),弹出对话框"恭喜你学会函数调用了!"。
函数调用,在需要的位置直接写函数名。
代码:
<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>函数调用</title>
<script type="text/javascript">
function tcon()
{
alert("恭喜你学会函数调用了!");
}
</script>
</head>
<body>
<form>
<input type="button" value="点点我" onclick="tcon()">
</form>
</body>
</html>
函数调用
5-4有参数的函数
上节中add2()函数不能实现任意指定两数相加。其实,定义函数还可以如下格式:
function 函数名(参数1,参数2)
{
函数代码
}
注意:参数可以多个,根据需要增减参数个数。参数之间用(逗号,)隔开。
按照这个格式,函数实现任意两个数的和应该写成:
function add2(x,y)
{
sum = x + y;
document.write(sum);
}
x和y则是函数的两个参数,调用函数的时候,我们可通过这两个参数把两个实际的加数传递给函数了。
例如,add2(3,4)会求3+4的和,add2(60,20)则会求出60和20的和。
任务
补充右边编辑器代码,实现如下功能:
1. 补充右边编辑器第7行代码,定义函数实现三个数的和,函数名为add3。
2. 补充右边编辑器第12、13行代码,计算5、8、3/7、1、4两组三个数的和。
?不会了怎么办
1.定义函数要有参数,这样就可以重复使用并传不同的值。
add3(x,y,z)
2.求不同数的和,在调用函数要记的传数值。
add3(5,8,3);
add3(7,1,4);
代码:
<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>函数传参</title>
<script type="text/JavaScript">
function add3(x,y,z)
{
sum = x + y +z;
document.write(x+"、"+y+"、"+z+"和:"+sum+"<br/>");
}
add3(5,8,3);
add3(7,1,4);
</script>
</head>
<body>
</body>
</html>
函数传参
5-5返回值的函数
思考:上一节函数中,通过"document.write"把结果输出来,如果想对函数的结果进行处理怎么办呢?
我们只要把"document.write(sum)"这行改成如下代码:
function add2(x,y)
{
sum = x + y;
return sum; //返回函数值,return后面的值叫做返回值。
}
还可以通过变量存储调用函数的返回值,代码如下:
result = add2(3,4);//语句执行后,result变量中的值为7。
注意:函数中参数和返回值不只是数字,还可以是字符串等其它类型。
任务
补充右边编辑器代码,实现如下功能:
1. 定义函数实现两个数的积,函数名为app2,补充右边编辑器第10行代码,返回函数值。
2. 补充右边编辑器第12、13行代码,计算5、6/2、3两组两个数的积。分别保存在req1和req2变量中。
3. 补充右边编辑器第14行代码,计算req1和req2和的值,保存在变量sumq中。
1.函数返回值,使用return。
return sum;
2. 返回值可以存储在变量中。
var req1=app2(5,6);
var req2=app2(2,3);
var sumq=req1+req2;
代码:
<!DOCTYPE HTML>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>返回值函数</title>
<script type="text/javascript">
function app2(x,y)
{ var sum,x,y;
sum = x * y;
return sum;
}
req1=app2(5,6);
req2=app2(2,3);
sumq=req1+req2;
document.write("req1的值:"+req1+"<br/>");
document.write("req2的值:"+req2+"<br/>");
document.write("req1的值:"+req1+"与"+"req2的值:"+req2+"的和:"+sumq);
</script>
</head>
<body>
</body>
</html>
返回值函数
编程练习
使用javascript代码写出一个函数:实现传入两个整数后弹出较大的整数。
任务
第一步: 编写代码完成一个函数的定义吧。
第二步: 我们来补充函数体中的控制语句,完成函数功能吧。
提示:再想一想,两个整数比较有三种情况,大于,等于或小于,所以我们需要控制语句判断(if...else if)。
第三步: 写好的函数,我们就可以任意调用函数了。通过函数调用实现两组数值中,返回较大值吧。
代码:
<!DOCTYPE HTML>
<html >
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>函数</title> <script type="text/javascript"> //定义函数
function size(x,y){
if(x>y){
return x;
}
else if(x<y){
return y;
}
else{
document.write("一样大")
}
} //函数体,判断两个整数比较的三种情况
a=size(5,4);
b=size(6,3); //调用函数,实现下面两组数中,返回就大值。
document.write(" 5 和 4 的较大值是:"+a+"<br>");
document.write(" 6 和 3 的较大值是:"+b );
</script>
</head>
<body>
</body>
</html>
函数
JavaScript进阶 - 第5章 小程序,大作用(函数)的更多相关文章
- javascript进阶课程--第一章--函数
javascript进阶课程--第一章--函数 学习要点 了解内存管理 掌握全局函数的使用 知识点 基本类型和引用类型 基本类型值有:undefined,NUll,Boolean,Number和Str ...
- javascript进阶教程第一章案例实战
javascript进阶教程第一章案例实战 一.学习任务 通过几个案例练习回顾学过的知识 通过练习积累JS的使用技巧 二.实例 练习1:删除确认提示框 实例描述: 防止用户小心单击了“删除”按钮,在用 ...
- javascript进阶课程--第二章--对象
javascript进阶课程--第二章--对象 学习要点 理解面向对象的概念 掌握对象的创建方法 掌握继承的概念和实现方法 基本概念 对象究竟是什么?什么叫面向对象编程? 对象是从我们现实生活中抽象出 ...
- javascript进阶教程第二章对象案例实战
javascript进阶教程第二章对象案例实战 一.学习任务 通过几个案例练习回顾学过的知识 通过案例练习补充几个之前没有见到或者虽然讲过单是讲的不仔细的知识点. 二.具体实例 温馨提示 面向对象的知 ...
- 【微信小程序】小程序中的函数节流
大ga吼! 很久没写博客咯,今天学到了一点新知识, 记录分享一下~ 摘要: 小程序中的函数节流 场景: 从商城列表进入商品详情中时,或者生成,提交订单, 付款的时候, 若用户快速点击(一秒8键,母胎s ...
- 微信小程序跳转函数总结
微信小程序跳转函数总结 笔者在微信小程序前端的开发过程中,在不同的情况下遇到了需要使用不同的页面跳转逻辑的情况,以下是我对这些函数的使用场景的一个总结介绍. wx.navigateTo 这是最常用 ...
- 微信小程序之使用函数防抖与函数节流
函数防抖和函数节流都是老生常谈的问题了.这两种方式都能优化 js 的性能.有些人可能会搞混两个的概念.所以,我以自己的理解,来解释这两个概念的含义.并且列举在小程序中这两个方法的使用. 函数防抖: 英 ...
- JavaScript进阶 - 第1章 系好安全带,准备启航
第1章 系好安全带,准备启航 1-1让你认识JS 你知道吗,Web前端开发师需要掌握什么技术?也许你已经了解HTML标记(也称为结构),知道了CSS样式(也称为表示),会使用HTML+CSS创建一个漂 ...
- 小程序 大转盘 抽奖 canvas animation
项目需求运用到大转盘 可设置概率 可直接自定义结果 效果如下
随机推荐
- win 10 安装.msi 程序出现the error code is 2503
解决方法: C:\Windows\temp文件夹的权限不够,需要给其更高权限 右键temp文件夹 点击属性进入属性对话框 组或用户名的里面的All APPLICATION PACKAGES和所有受限制 ...
- ios图片瀑布流代码
ios瀑布流,实现简单的瀑布流视图布局,可以显示网络图片,下拉刷新,上拉加载更多. 下载:http://www.huiyi8.com/sc/9087.html
- openfire性能测试
使用TSung对Jabber服务器openfire进行压力测试 http://blog.csdn.net/spider_zhcl/article/details/6073920 Tsung负载测试Ti ...
- 破解 Navicat Premium 12
一.下载 若文件百度云链接失效,请发邮件给博主:1766211120@qq.com 1.安装文件下载 v12.0.11(x64)版本下载地址如下 链接:https://pan.baidu.com/s/ ...
- Gym-101673: A Abstract Art (模板,求多个多边形的面积并)
手抄码板大法. #include<bits/stdc++.h> using namespace std; #define mp make_pair typedef long long ll ...
- ACM学习历程——HDU4472 Count(数学递推) (12年长春区域赛)
Description Prof. Tigris is the head of an archaeological team who is currently in charge of an exca ...
- 【Lintcode】028.Search a 2D Matrix
题目: Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the f ...
- Ubuntu下Apache重启错误:Could not reliably determine解决
错误信息:apache2: Could not reliably determine the server's fully qualified domain name, using 127.0.1.1 ...
- javascript中原型链存在的问题
我们知道使用原型链实现继承是一个goodway:)看个原型链继承的例子. function A () { this.abc = 44; } A.prototype.getAbc = function ...
- poco时间操作
Poco::DateTime Poco::Timespan Poco::Timestamp 时间操作 Poco::DateTime dt; //c++ 20才有 Calendar dt = dt + ...