题目描述

如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作:

操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z

操作2: 格式: 2 x y 表示求树从x到y结点最短路径上所有节点的值之和

操作3: 格式: 3 x z 表示将以x为根节点的子树内所有节点值都加上z

操作4: 格式: 4 x 表示求以x为根节点的子树内所有节点值之和

输入输出格式

输入格式:

第一行包含4个正整数N、M、R、P,分别表示树的结点个数、操作个数、根节点序号和取模数(即所有的输出结果均对此取模)。

接下来一行包含N个非负整数,分别依次表示各个节点上初始的数值。

接下来N-1行每行包含两个整数x、y,表示点x和点y之间连有一条边(保证无环且连通)

接下来M行每行包含若干个正整数,每行表示一个操作,格式如下:

操作1: 1 x y z

操作2: 2 x y

操作3: 3 x z

操作4: 4 x

输出格式:

输出包含若干行,分别依次表示每个操作2或操作4所得的结果(对P取模)

输入输出样例

输入样例#1:

5 5 2 24
7 3 7 8 0
1 2
1 5
3 1
4 1
3 4 2
3 2 2
4 5
1 5 1 3
2 1 3
输出样例#1:

2
21

说明

时空限制:1s,128M

数据规模:

对于30%的数据:N<=10,M<=10

对于70%的数据:N<=1000,M<=1000

对于100%的数据:N<=100000,M<=100000

(其实,纯随机生成的树LCA+暴力是能过的,可是,你觉得可能是纯随机的么233)

样例说明:

树的结构如下:

各个操作如下:

故输出应依次为2、21(重要的事情说三遍:记得取模)

思路:

  裸树剖;

来,上代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> #define maxn 100001
#define LL long long int using namespace std; struct EdgeType {
LL to,next;
};
struct EdgeType edge[maxn<<]; struct TreeNodeType {
LL l,r,dis,mid,flag;
};
struct TreeNodeType tree[maxn<<]; LL if_z,tree_num,tree_dis[maxn],deep[maxn],cnt;
LL f[maxn],n,m,s,p,dis[maxn],flag[maxn],Enum;
LL size[maxn],end[maxn],belong[maxn],head[maxn]; char Cget; inline void read_int(LL &now)
{
now=,if_z=,Cget=getchar();
while(Cget>''||Cget<'')
{
if(Cget=='-') if_z=-;
Cget=getchar();
}
while(Cget>=''&&Cget<='')
{
now=now*+Cget-'';
Cget=getchar();
}
now*=if_z;
} inline void edge_add(LL from,LL to)
{
edge[++Enum].to=from,edge[Enum].next=head[to],head[to]=Enum;
edge[++Enum].to=to,edge[Enum].next=head[from],head[from]=Enum;
} inline void tree_up(LL now)
{
tree[now].dis=tree[now<<].dis+tree[now<<|].dis;
} void tree_build(LL now,LL l,LL r)
{
tree[now].l=l,tree[now].r=r;
if(l==r)
{
tree[now].dis=tree_dis[++tree_num];
return ;
}
tree[now].mid=(tree[now].l+tree[now].r)>>;
tree_build(now<<,l,tree[now].mid);
tree_build(now<<|,tree[now].mid+,r);
tree_up(now);
} inline void tree_down(LL now)
{
if(tree[now].l==tree[now].r) return ;
tree[now<<].dis+=(tree[now<<].r-tree[now<<].l+)*tree[now].flag;
tree[now<<].flag+=tree[now].flag;
tree[now<<|].dis+=(tree[now<<|].r-tree[now<<|].l+)*tree[now].flag;
tree[now<<|].flag+=tree[now].flag;
tree[now].flag=;
} void tree_change(LL now,LL l,LL r,LL x)
{
if(tree[now].l==l&&tree[now].r==r)
{
tree[now].dis+=(r-l+)*x;
tree[now].flag+=x;
return ;
}
if(tree[now].flag) tree_down(now);
if(l>tree[now].mid) tree_change(now<<|,l,r,x);
else if(r<=tree[now].mid) tree_change(now<<,l,r,x);
else
{
tree_change(now<<,l,tree[now].mid,x);
tree_change(now<<|,tree[now].mid+,r,x);
}
tree_up(now);
} LL tree_query(LL now,LL l,LL r)
{
if(tree[now].l==l&&tree[now].r==r)
{
return tree[now].dis;
}
if(tree[now].flag) tree_down(now);
tree_up(now);
if(l>tree[now].mid) return tree_query(now<<|,l,r);
else if(r<=tree[now].mid) return tree_query(now<<,l,r);
else return tree_query(now<<,l,tree[now].mid)+tree_query(now<<|,tree[now].mid+,r);
} void search(LL now,LL fa)
{
LL pos=cnt++;
deep[now]=deep[fa]+,f[now]=fa;
for(LL i=head[now];i;i=edge[i].next)
{
if(edge[i].to==fa) continue;
search(edge[i].to,now);
}
size[now]=cnt-pos;
} void search_(LL now,LL chain)
{
belong[now]=chain,flag[now]=++cnt;
tree_dis[flag[now]]=dis[now];
LL pos=;
for(LL i=head[now];i;i=edge[i].next)
{
if(flag[edge[i].to]!=) continue;
if(size[edge[i].to]>size[pos]) pos=edge[i].to;
}
if(pos!=) search_(pos,chain);
for(LL i=head[now];i;i=edge[i].next)
{
if(flag[edge[i].to]!=) continue;
search_(edge[i].to,edge[i].to);
}
end[now]=cnt;
} inline void solve_change(LL x,LL y,LL z)
{
while(belong[x]!=belong[y])
{
if(deep[belong[x]]<deep[belong[y]]) swap(x,y);
tree_change(,flag[belong[x]],flag[x],z);
x=f[belong[x]];
}
if(deep[x]<deep[y]) swap(x,y);
tree_change(,flag[y],flag[x],z);
} inline LL solve_query(LL x,LL y)
{
LL ans=;
while(belong[x]!=belong[y])
{
if(deep[belong[x]]<deep[belong[y]]) swap(x,y);
ans=(ans+tree_query(,flag[belong[x]],flag[x]))%p;
x=f[belong[x]];
}
if(deep[x]<deep[y]) swap(x,y);
ans=(ans+tree_query(,flag[y],flag[x]))%p;
return ans;
} int main()
{
read_int(n),read_int(m),read_int(s),read_int(p);
for(LL i=;i<=n;i++) read_int(dis[i]);
LL type,from,to,cur;
for(LL i=;i<n;i++)
{
read_int(from),read_int(to);
edge_add(from,to);
}
search(s,),cnt=,search_(s,s);
cnt=,tree_build(,,n);
for(LL i=;i<=m;i++)
{
read_int(type);
if(type==)
{
read_int(from),read_int(to),read_int(cur);
solve_change(from,to,cur);
}
if(type==)
{
read_int(from),read_int(to);
printf("%d\n",solve_query(from,to)%p);
}
if(type==)
{
read_int(from),read_int(to);
tree_change(,flag[from],end[from],to);
}
if(type==)
{
read_int(from);
printf("%d\n",tree_query(,flag[from],end[from])%p);
}
}
return ;
}

AC日记——【模板】树链剖分 洛谷 P3384的更多相关文章

  1. [luogu P3384] [模板]树链剖分

    [luogu P3384] [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点 ...

  2. luoguP3384 [模板]树链剖分

    luogu P3384 [模板]树链剖分 题目 #include<iostream> #include<cstdlib> #include<cstdio> #inc ...

  3. [洛谷P3384] [模板] 树链剖分

    题目传送门 显然是一道模板题. 然而索引出现了错误,狂wa不止. 感谢神犇Dr_J指正.%%%orz. 建线段树的时候,第44行. 把sum[p]=bv[pos[l]]%mod;打成了sum[p]=b ...

  4. 模板 树链剖分BFS版本

    //点和线段树都从1开始 //边使用vector vector<int> G[maxn]; ],num[maxn],iii[maxn],b[maxn],a[maxn],top[maxn], ...

  5. AC日记——红色的幻想乡 洛谷 P3801

    红色的幻想乡 思路: 线段树+容斥原理: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 100005 #de ...

  6. AC日记——无线网络发射器选址 洛谷 P2038

    题目描述 随着智能手机的日益普及,人们对无线网的需求日益增大.某城市决定对城市内的公共场所覆盖无线网. 假设该城市的布局为由严格平行的129 条东西向街道和129 条南北向街道所形成的网格状,并且相邻 ...

  7. AC日记——小A的糖果 洛谷七月月赛

    小A的糖果 思路: for循环贪心: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 100005 #defi ...

  8. AC日记——矩阵取数游戏 洛谷 P1005

    矩阵取数游戏 思路: dp+高精: 代码: #include <bits/stdc++.h> using namespace std; #define ll long long struc ...

  9. AC日记——妖梦拼木棒 洛谷 P3799

    妖梦拼木棒 思路: 神特么题: 代码: #include <bits/stdc++.h> using namespace std; #define mod 1000000007LL int ...

随机推荐

  1. Ralph W. Tyler【拉尔夫·泰勒】

    Ralph W. Tyler Anyone who cares about what schools and colleges teach and how their student learn wi ...

  2. kafka 的offset的重置

    最近在spark读取kafka消息时,每次读取都会从kafka最新的offset读取.但是如果数据丢失,如果在使用Kafka来分发消息,在数据处理的过程中可能会出现处理程序出异常或者是其它的错误,会造 ...

  3. SSH无密码登录及远程拷贝命令SCP的使用

    SSH无密码登录 1.生成密钥对(公钥和私钥) $ cd /home/cen/.ssh $ ssh-keygen -t rsa #生成密钥,使用rsa方式进行加密,四个回车 $ ssh-copy-id ...

  4. Android 简历+面试题 汇总

    1.教你写简历 1.1.你真的会写简历吗? 1.2.80%以上简历都是不合格的 1.3.推荐两个技术简历模板 1.4.关于程序员求职简历 1.5.程序员简历模板列表 2.面试题 2.1.国内一线互联网 ...

  5. input框中的必填项之取消当前input框为必填项

    html5新增了一个required属性,可以使用这个属性对文本框设置必填项,直接在input文本框上添加required即可 . 效果如图:   

  6. mysql初始化失败的问题

    首先:my.ini 配置文件中 路径需要改成自己电脑mysql解压的路径. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 ...

  7. StartWith 测试

    var clientConfiguration = GetConfiguration("couchbase.json"); ClusterHelper.Initialize(cli ...

  8. leetcode 【 Pascal's Triangle 】python 实现

    题目: Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5,R ...

  9. 16进制转10进制 HDU-1720

    A+B Coming Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  10. tinyipa make

    参考:http://tinycorelinux.net/ Ironic Python Agent repo还提供了一组脚本,用于在imagebuild / tinyipa文件夹下构建一个基于Linux ...