UVA - 294 Divisors【数论/区间内约数最多的数的约数个数】
Mathematicians love all sorts of odd properties of numbers. For instance, they consider to be an
interesting number, since it is the first odd number for which the sum of its divisors is larger than the
number itself.
To help them search for interesting numbers, you are to write a program that scans a range of
numbers and determines the number that has the largest number of divisors in the range. Unfortunately,
the size of the numbers, and the size of the range is such that a too simple-minded approach may take
too much time to run. So make sure that your algorithm is clever enough to cope with the largest
possible range in just a few seconds.
Input
The first line of input specifies the number N of ranges, and each of the N following lines contains a
range, consisting of a lower bound L and an upper bound U, where L and U are included in the range.
L and U are chosen such that ≤ L ≤ U ≤ and ≤ U − L ≤ .
Output
For each range, find the number P which has the largest number of divisors (if several numbers tie for
first place, select the lowest), and the number of positive divisors D of P (where P is included as a
divisor). Print the text ‘Between L and H, P has a maximum of D divisors.’, where L, H, P,
and D are the numbers as defined above.
Sample Input Sample Output
Between and , has a maximum of divisors.
Between and , has a maximum of divisors.
Between and , has a maximum of divisors.
题目
/*
1.约数个数定理:对于一个数a可以分解质因数:a=a1的r1次方乘以a2的r2次方乘以a3的r3次方乘以…… 则a的约数的个数就是(r1+1)(r2+1)(r3+1)…… 需要指出来的是,a1,a2,a3……都是a的质因数。r1,r2,r3……是a1,a2,a3……的指数。 2.判断m的约数个数:将m开方得n,判断n之前属于m的约数个数num。若n为整数,则m约数个数为2*num+1,否则为2*num
*/
#include <bits/stdc++.h> using namespace std; int countFactor(int n)
{
int cnt = ;
for(int i=; i<=sqrt(n); i++){
int c = ;
while(n % i == ){
n /= i;
c++;
}
cnt *= (c + );
}
if(n > ) cnt *= ;
return cnt;
} int main()
{
int n, l, u; scanf("%d", &n);
while(n--) {
scanf("%d%d", &l, &u); int ans = ,num;
for(int i=l; i<=u; i++){
int tmp = countFactor(i);
if(tmp > ans){
ans = tmp;
num = i;
}
} printf("Between %d and %d, %d has a maximum of %d divisors.\n", l, u, num, ans);
} return ;
}
Code短除
#include <iostream>
#include <cstdlib> using namespace std; int visit[];
int prime[]; //因式分解,计算因子个数
int number( int a, int n )
{
int sum = ;
for ( int i = ; a > && i < n ; ++ i )
if ( a%prime[i] == ) {
int count = ;
while ( a%prime[i] == ) {
count ++;
a /= prime[i];
}
sum *= count;
}
return sum;
} int main()
{
//利用筛法计算素数,打表
for ( int i = ; i < ; ++ i )
visit[i] = ;
int count = ;
for ( int i = ; i < ; ++ i )
if ( visit[i] ) {
prime[count ++] = i;
for ( int j = *i ; j < ; j += i )
visit[j] = ;
} long a,b,c;
while ( cin >> c )
while ( c -- ) {
cin >> a >> b;
long save = a,max = ,temp;
for ( long i = a ; i <= b ; ++ i ) {
temp = number( i, count );
if ( temp > max ) {
max = temp;
save = i;
}
} cout << "Between " << a << " and " << b << ", " << save
<< " has a maximum of " << max << " divisors.\n";
}
return ;
}
筛法
UVA - 294 Divisors【数论/区间内约数最多的数的约数个数】的更多相关文章
- UVA 294 294 - Divisors (数论)
UVA 294 - Divisors 题目链接 题意:求一个区间内,因子最多的数字. 思路:因为区间保证最多1W个数字,因子能够遍历区间.然后利用事先筛出的素数求出质因子,之后因子个数为全部(质因子的 ...
- 牛客:t次询问,每次给你一个数n,求在[1,n]内约数个数最多的数的约数个数(数论+贪心)
https://ac.nowcoder.com/acm/contest/907/B t次询问,每次给你一个数n,求在[1,n]内约数个数最多的数的约数个数 分析: 根据约数和定理:对于一个大于1正整数 ...
- LOJ #6278. 数列分块入门 2-分块(区间加法、查询区间内小于某个值x的元素个数)
#6278. 数列分块入门 2 内存限制:256 MiB时间限制:500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: hzwer 提交提交记录统计测试数据讨论 6 题目描述 给出 ...
- UVA - 294 Divisors (约数)(数论)
题意:输入两个整数L,U(1<=L<=U<=109,U-L<=10000),统计区间[L,U]的整数中哪一个的正约数最多.如果有多个,输出最小值. 分析: 1.求一个数的约数, ...
- UVa 294 - Divisors 解题报告 c语言实现 素数筛法
1.题目大意: 输入两个整数L.H其中($1≤L≤H≤10^9,H−L≤10000$),统计[L,H]区间上正约数最多的那个数P(如有多个,取最小值)以及P的正约数的个数D. 2.原理: 对于任意的一 ...
- Uva 294 Divisors(唯一分解定理)
题意:求区间内正约数最大的数. 原理:唯一分解定义(又称算术基本定理),定义如下: 任何一个大于1的自然数 ,都可以唯一分解成有限个质数的乘积 ,这里 均为质数,其诸指数 是正整数.这样的分解称 ...
- UVA 294 - Divisors 因子个数
Mathematicians love all sorts of odd properties of numbers. For instance, they consider 945 to be an ...
- B - 低阶入门膜法 - D-query (查询区间内有多少不同的数)
题目链接:https://cn.vjudge.net/contest/284294#problem/B 题目大意:查询区间内有多少个不相同的数. 具体思路:主席树的做法,主席树的基础做法是查询区间第k ...
- #6278. 数列分块入门 2(询问区间内小于某个值 xx 的元素个数)
题目链接:https://loj.ac/problem/6278 题目大意:中文题目 具体思路:数列分块模板题,对于更新的时候,我们通过一个辅助数组来进行,对于原始的数组,我们只是用来加减,然后这个辅 ...
随机推荐
- Codeforces Round #456 (Div. 2) A. Tricky Alchemy
传送门:http://codeforces.com/contest/912/problem/A A. Tricky Alchemy time limit per test1 second memory ...
- Ecplise实战常用操作快捷键(更新至2018年10月8日 13:46:40)
ctrl+鼠标左键 进入/查看这个类或者方法, ctrl + t 快速类型层次结构(出现部分方法) ctrl + o 快速大 ...
- Goole Search Auto Complete
这个项目就九章算法大数据课程的一个项目.主要分为两步: 第一步是 offline 建立 数据库 我们用两个map reduce 的data pipline 来实现. 第二步是 online显示把数据里 ...
- vue tradingView(二)
tradingView 一些配置问题 tradingView 一些配置问题 javascript Demo_Hu 4月17日提问 · 4月17日更新 9 关注 1 收藏,993 浏览 问题对人有帮助, ...
- 数组线性表ArrayList 和链表类LinkedList
数组线性表类ArrayList 和链表类LinkedList 是实现List接口的两个具体类.ArrayList 数组储存元素,这个数组是动态创建的.如果元素个数超过了数组的容量,就创建一个更大的新数 ...
- 【bzoj1266】[AHOI2006]上学路线route 最短路+最小割
题目描述 可可和卡卡家住合肥市的东郊,每天上学他们都要转车多次才能到达市区西端的学校.直到有一天他们两人参加了学校的信息学奥林匹克竞赛小组才发现每天上学的乘车路线不一定是最优的. 可可:“很可能我们在 ...
- 预编译scss以及scss和less px 转rem
预编译scss步骤: 1 搜索ruby并安装,点击 2 安装sass: 3 在hubuilder工具中设置预编译: 触发命令地址为ruby安装地址 命令参数为 %FileName% %FileBase ...
- iOS笔记-(缓存机制的理解与实现)
(1)运行中的现象: 在iOS开发中,会遇到:同一NSURL被多次请求,会造成用户的流量浪费,程序的响应速度不够快.比如说,从服务器上请求一张图片,请求100次,下载的结果都是一样的. (2)解决方法 ...
- POJ 1236 Network of Schools Tarjan缩点
Network of Schools Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 22729 Accepted: 89 ...
- ThreadPool学习草稿1
原文发布时间为:2010-10-27 -- 来源于本人的百度文章 [由搬家工具导入] using System;using System.Collections.Generic;using Syste ...