机器学习之逻辑回归(logistic回归)
前言
以下内容是个人学习之后的感悟,转载请注明出处~
逻辑回归
一、为什么使用logistic回归
一般来说,回归不用在分类问题上,因为回归是连续型模型,而且受噪声影响比较大。
Why? 为什么回归一般不用在分类上?其实,很多初学者都会提出这个问题。然而,文字的解释往往不能说服我们,接下来
用图示的方式为大家讲解。
以最简单的分类为例,当y≥0.5时,输出“1”;当y<0.5时,输出“0”。下面左图,数据样本较好,线性回归模型在y=0.5处的橘色分界线
刚好在“0”、“1”两类样本的分界线处,完美地完成分类。然而,现实情况往往没有这么乐观,下面有图中出现了一个额外的样本,所谓的噪
声点,会使训练完毕的线性回归模型准确度变差。从右图中可以做直观地看到,线性回归模型在y=0.5处的粉色分界线将一个“1”类样本分类到
了“0”类样本集中,此时就出现了判断失误。
所以线性回归一般不用在分类问题上,如果非要用于分类,可以使用logistic回归。
逻辑回归为什么可以用在分类上?why?
原因很简单,逻辑回归本质上是线性回归,只是在特征到结果的映射中加入了一层函数映射,即先把特征线性求和θTx,设为z,然后使用函
数g(z)作为假设函数来预测。g(z)可以将连续值映射到0和1上。如下图所示,当z≥0时,输出为1;当z<0时,输出为0。这样可以实现很好的分类。
具体实现请看下文~
二、logistic回归
- 假设函数:
- 初始代价函数:
(细心的童鞋会发现,这里的代价函数与线性回归模型中的J(θ0,θ1)不一样,其实就是整体误差和平均误差的区别。)
显然,由于S型函数的存在,代价函数是非凸函数,无法使用梯度下降法来求极小值。这就需要转换为下面的简易代价函数。
- 简易代价函数:
说实话,这一步,我也不知道是怎么推导的,有哪位大神知道的话,请不吝赐教~
然而,要想使用梯度下降法,还需要转换为J(θ)代价函数
- J(θ)代价函数(凸函数):
- 使用方法:
1、采用梯度下降法,不断迭代下列公式,直到收敛,求出θ。
其推导过程如下:
细心的童鞋可能会注意到,逻辑回归和线性回归在梯度下降法中使用的迭代公式竟然一样。其实不然,不同点在于
迭代公式中的hθ(x):
逻辑回归:
线性回归:
2、判断θTx的大小来分类。
“y=1”,当θTx≥0
“y=0”,当θTx<0
(很容易发现θTx=0是分类的决策边界)
三、多分类逻辑回归
使用逻辑回归算法进行多分类时,可以设其中一类为1,其他都为0,建立一个分类器,以此类推,遍历全部类别,建立N个分类器。
如下表所示,总共3个类别,因此设立3个分类器,每个分类器的样本训练由上文中的二分类步骤完成。
![]() |
![]() |
三角形设为1,其他设为0。作为分类器1,即hθ(1)(x) |
![]() |
正方形设为1,其他设为0。作为分类器2,即hθ(2)(x) | |
![]() |
红十字设为1,其他设为0。作为分类器3,即hθ(3)(x) |
每个分类器训练完毕后,取一个新的x数据,代入3个分类器中,哪个求出的h值最大,则这个分类器可信度最高,此分类器的“1”类别
就是此x的类别。
以上是全部内容,如果有什么地方不对,请在下面留言,谢谢~
机器学习之逻辑回归(logistic回归)的更多相关文章
- 机器学习实战笔记5(logistic回归)
1:简单概念描写叙述 如果如今有一些数据点,我们用一条直线对这些点进行拟合(改线称为最佳拟合直线),这个拟合过程就称为回归.训练分类器就是为了寻找最佳拟合參数,使用的是最优化算法. 基于sigmoid ...
- 机器学习算法( 五、Logistic回归算法)
一.概述 这会是激动人心的一章,因为我们将首次接触到最优化算法.仔细想想就会发现,其实我们日常生活中遇到过很多最优化问题,比如如何在最短时间内从A点到达B点?如何投入最少工作量却获得最大的效益?如何设 ...
- 机器学习(六)— logistic回归
最近一直在看机器学习相关的算法,今天学习logistic回归,在对算法进行了简单分析编程实现之后,通过实例进行验证. 一 logistic概述 个人理解的回归就是发现变量之间的关系,也就是求回归系数, ...
- 机器学习之线性回归以及Logistic回归
1.线性回归 回归的目的是预测数值型数据的目标值.目标值的计算是通过一个线性方程得到的,这个方程称为回归方程,各未知量(特征)前的系数为回归系数,求这些系数的过程就是回归. 对于普通线性回归使用的损失 ...
- python机器学习实现逻辑斯蒂回归
逻辑斯蒂回归 关注公众号"轻松学编程"了解更多. [关键词]Logistics函数,最大似然估计,梯度下降法 1.Logistics回归的原理 利用Logistics回归进行分类的 ...
- <机器学习实战>读书笔记--logistic回归
1. 利用logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类. 2.sigmoid函数的分类 Sigmoid函数公式定义 3.梯度上升法 基本思想:要找 ...
- 【机器学习】分类算法——Logistic回归
一.LR分类器(Logistic Regression Classifier) 在分类情形下,经过学习后的LR分类器是一组权值w0,w1, -, wn,当测试样本的数据输入时,这组权值与测试数据按照线 ...
- Softmax回归——logistic回归模型在多分类问题上的推广
Softmax回归 Contents [hide] 1 简介 2 代价函数 3 Softmax回归模型参数化的特点 4 权重衰减 5 Softmax回归与Logistic 回归的关系 6 Softma ...
- Logistic回归(逻辑回归)和softmax回归
一.Logistic回归 Logistic回归(Logistic Regression,简称LR)是一种常用的处理二类分类问题的模型. 在二类分类问题中,把因变量y可能属于的两个类分别称为负类和正类, ...
- [机器学习实战-Logistic回归]使用Logistic回归预测各种实例
目录 本实验代码已经传到gitee上,请点击查收! 一.实验目的 二.实验内容与设计思想 实验内容 设计思想 三.实验使用环境 四.实验步骤和调试过程 4.1 基于Logistic回归和Sigmoid ...
随机推荐
- Android Studio之Activity切换动画(三)
1.上一篇文章"Android Studio之多个Activity的滑动切换(二)"中实现了多个activity之间的滑动切换,可是新切换出的activity大多是从右側进入 2. ...
- 使用Caffe完成图像目标检测 和 caffe 全卷积网络
一.[用Python学习Caffe]2. 使用Caffe完成图像目标检测 标签: pythoncaffe深度学习目标检测ssd 2017-06-22 22:08 207人阅读 评论(0) 收藏 举报 ...
- Dash 使用
花了 160 买了这个软件,至少看一遍它的 user guide,钱不能白花. https://kapeli.com/guide/guide.html 设置全局快捷键 Preference -> ...
- Openlayers中layer介绍
1.base layers & overlay layers base layer:最底层的layer,其它的图层是在他之上,最先增加的图层默认作为base layer. overlay la ...
- spring 过滤器简介
spring 过滤器简介 过滤器放在容器结构的什么位置 过滤器放在web资源之前,可以在请求抵达它所应用的web资源(可以是一个Servlet.一个Jsp页面,甚至是一个HTML页面)之前截获进入的请 ...
- Extjs form 表单的 submit
说明:extjs form表单的提交方式是多种多样的,本文只是介绍其中的一种方法,本文介绍的方法可能不是完美的,但是对于一般的应用应该是没有问题的. 本文包括的主要内容有:form面板设计.f ...
- define tensorflow and run it
import tensorflow as tf a, b, c, d, e = tf.constant(5, name='input_a'), tf.constant(6, name='input_b ...
- 组件的详细说明和生命周期ComponentSpecs and Lifecycle
render ReactComponent render() render() 方法是必须的. 当调用的时候,会检测 this.props 和 this.state,返回一个单子级组件.该子级组件可以 ...
- 面试算法爱好者书籍/OJ推荐
面试算法爱好者书籍/OJ推荐 这个书单也基本适用于准备面试. 一.教科书 基本上一般的算法课本介绍的范围都不会超出算法导论和算法引论的范围.读完这两本书,其它的算法课本大致翻翻也就知道是什么货色了. ...
- javascript Date对象的介绍及linux时间戳如何在javascript中转化成标准时间格式
1.Date对象介绍 Date对象具有多种构造函数.new Date()new Date(milliseconds)new Date(datestring)new Date(year, month)n ...