机器学习之逻辑回归(logistic回归)
前言
以下内容是个人学习之后的感悟,转载请注明出处~
逻辑回归
一、为什么使用logistic回归
一般来说,回归不用在分类问题上,因为回归是连续型模型,而且受噪声影响比较大。
Why? 为什么回归一般不用在分类上?其实,很多初学者都会提出这个问题。然而,文字的解释往往不能说服我们,接下来
用图示的方式为大家讲解。
以最简单的分类为例,当y≥0.5时,输出“1”;当y<0.5时,输出“0”。下面左图,数据样本较好,线性回归模型在y=0.5处的橘色分界线
刚好在“0”、“1”两类样本的分界线处,完美地完成分类。然而,现实情况往往没有这么乐观,下面有图中出现了一个额外的样本,所谓的噪
声点,会使训练完毕的线性回归模型准确度变差。从右图中可以做直观地看到,线性回归模型在y=0.5处的粉色分界线将一个“1”类样本分类到
了“0”类样本集中,此时就出现了判断失误。
所以线性回归一般不用在分类问题上,如果非要用于分类,可以使用logistic回归。
逻辑回归为什么可以用在分类上?why?
原因很简单,逻辑回归本质上是线性回归,只是在特征到结果的映射中加入了一层函数映射,即先把特征线性求和θTx,设为z,然后使用函
数g(z)作为假设函数来预测。g(z)可以将连续值映射到0和1上。如下图所示,当z≥0时,输出为1;当z<0时,输出为0。这样可以实现很好的分类。
具体实现请看下文~
二、logistic回归
- 假设函数:
- 初始代价函数:
(细心的童鞋会发现,这里的代价函数与线性回归模型中的J(θ0,θ1)不一样,其实就是整体误差和平均误差的区别。)
显然,由于S型函数的存在,代价函数是非凸函数,无法使用梯度下降法来求极小值。这就需要转换为下面的简易代价函数。
- 简易代价函数:
说实话,这一步,我也不知道是怎么推导的,有哪位大神知道的话,请不吝赐教~
然而,要想使用梯度下降法,还需要转换为J(θ)代价函数
- J(θ)代价函数(凸函数):
- 使用方法:
1、采用梯度下降法,不断迭代下列公式,直到收敛,求出θ。
其推导过程如下:
细心的童鞋可能会注意到,逻辑回归和线性回归在梯度下降法中使用的迭代公式竟然一样。其实不然,不同点在于
迭代公式中的hθ(x):
逻辑回归:
线性回归:
2、判断θTx的大小来分类。
“y=1”,当θTx≥0
“y=0”,当θTx<0
(很容易发现θTx=0是分类的决策边界)
三、多分类逻辑回归
使用逻辑回归算法进行多分类时,可以设其中一类为1,其他都为0,建立一个分类器,以此类推,遍历全部类别,建立N个分类器。
如下表所示,总共3个类别,因此设立3个分类器,每个分类器的样本训练由上文中的二分类步骤完成。
![]() |
![]() |
三角形设为1,其他设为0。作为分类器1,即hθ(1)(x) |
![]() |
正方形设为1,其他设为0。作为分类器2,即hθ(2)(x) | |
![]() |
红十字设为1,其他设为0。作为分类器3,即hθ(3)(x) |
每个分类器训练完毕后,取一个新的x数据,代入3个分类器中,哪个求出的h值最大,则这个分类器可信度最高,此分类器的“1”类别
就是此x的类别。
以上是全部内容,如果有什么地方不对,请在下面留言,谢谢~
机器学习之逻辑回归(logistic回归)的更多相关文章
- 机器学习实战笔记5(logistic回归)
1:简单概念描写叙述 如果如今有一些数据点,我们用一条直线对这些点进行拟合(改线称为最佳拟合直线),这个拟合过程就称为回归.训练分类器就是为了寻找最佳拟合參数,使用的是最优化算法. 基于sigmoid ...
- 机器学习算法( 五、Logistic回归算法)
一.概述 这会是激动人心的一章,因为我们将首次接触到最优化算法.仔细想想就会发现,其实我们日常生活中遇到过很多最优化问题,比如如何在最短时间内从A点到达B点?如何投入最少工作量却获得最大的效益?如何设 ...
- 机器学习(六)— logistic回归
最近一直在看机器学习相关的算法,今天学习logistic回归,在对算法进行了简单分析编程实现之后,通过实例进行验证. 一 logistic概述 个人理解的回归就是发现变量之间的关系,也就是求回归系数, ...
- 机器学习之线性回归以及Logistic回归
1.线性回归 回归的目的是预测数值型数据的目标值.目标值的计算是通过一个线性方程得到的,这个方程称为回归方程,各未知量(特征)前的系数为回归系数,求这些系数的过程就是回归. 对于普通线性回归使用的损失 ...
- python机器学习实现逻辑斯蒂回归
逻辑斯蒂回归 关注公众号"轻松学编程"了解更多. [关键词]Logistics函数,最大似然估计,梯度下降法 1.Logistics回归的原理 利用Logistics回归进行分类的 ...
- <机器学习实战>读书笔记--logistic回归
1. 利用logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类. 2.sigmoid函数的分类 Sigmoid函数公式定义 3.梯度上升法 基本思想:要找 ...
- 【机器学习】分类算法——Logistic回归
一.LR分类器(Logistic Regression Classifier) 在分类情形下,经过学习后的LR分类器是一组权值w0,w1, -, wn,当测试样本的数据输入时,这组权值与测试数据按照线 ...
- Softmax回归——logistic回归模型在多分类问题上的推广
Softmax回归 Contents [hide] 1 简介 2 代价函数 3 Softmax回归模型参数化的特点 4 权重衰减 5 Softmax回归与Logistic 回归的关系 6 Softma ...
- Logistic回归(逻辑回归)和softmax回归
一.Logistic回归 Logistic回归(Logistic Regression,简称LR)是一种常用的处理二类分类问题的模型. 在二类分类问题中,把因变量y可能属于的两个类分别称为负类和正类, ...
- [机器学习实战-Logistic回归]使用Logistic回归预测各种实例
目录 本实验代码已经传到gitee上,请点击查收! 一.实验目的 二.实验内容与设计思想 实验内容 设计思想 三.实验使用环境 四.实验步骤和调试过程 4.1 基于Logistic回归和Sigmoid ...
随机推荐
- EasyUI datagrid border处理,加边框,去边框,都可以,easyuidatagrid
下面是EasyUI 官网上处理datagrid border的demo: 主要是这句: $('#dg').datagrid('getPanel').removeClass('lines-both li ...
- 笔记08 throw e 和throw 的区别
throw e对原异常进行拷贝,然后将新的异常对象抛出,这一步拷贝就有可能导致错误啦,拷贝出来的异常对象可能和原来的异常对象不是一个类型. 比如原来的对象是个子类的异常对象,catch里声明的是父类异 ...
- 对OpenCV中Haar特征CvHaarClassifierCascade等结构理解
首先说一下这个级联分类器,OpenCV中级联分类器是根据VJ 04年的那篇论文(Robust Real-Time Face Detection)编写的,查看那篇论文,知道构建分类器的步骤如下: 1.根 ...
- PHP debug_backtrace() 函数
PHP Error 和 Logging 函数 实例 生成 PHP backtrace: <?php function a($txt) { b("Glenn"); } func ...
- RestTemplate请求
JSONObject json = new JSONObject(sendParam);HttpHeaders headers = new HttpHeaders();MediaType type = ...
- android arcmenu
http://www.kankanews.com/ICkengine/archives/129193.shtml
- 安卓Android手机直播推送同步录像功能设计与实现源码
本文转自:http://blog.csdn.net/jyt0551/article/details/58714595 EasyPusher是一款非常棒的推送客户端.稳定.高效.低延迟,音视频同步等都特 ...
- EasyPlayer安卓Android流媒体播放器实现直播过程中客户端快照功能
本文转自:http://blog.csdn.net/jyt0551/article/details/56942795 对于一个裸的RTSP URL,存放在播放列表上略显单调与枯燥.大家可以看到Easy ...
- Go Web(一)
Beego环境搭建和bee工具安装使:http://blog.csdn.net/qq_534019165/article/details/48288133 Go语言beego框架环境搭建:http:/ ...
- javascript --- 声明提前(学习笔记)
声明提升 未声明变量 console.log(a); 在没有定义 a 的情况下,直接使用,会报错. 声明变量 console.log(a); var a = 2; 输出结果:undefined 并不会 ...