RDD.Action触发SparkContext.run,这里举最简单的例子rdd.count()

  /**
* Return the number of elements in the RDD.
*/
def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum

  

Spark Action会触发SparkContext类的runJob,而runJob会继续调用DAGSchduler类的runJob

DAGSchduler类的runJob方法调用submitJob方法,并根据返回的completionFulture的value判断Job是否完成。

onReceive用于DAGScheduler不断循环的处理事件,其中submitJob()会产生JobSubmitted事件,进而触发handleJobSubmitted方法。

正常情况下会根据finalStage创建一个ActiveJob。而finalStage就是由spark action对应的finalRDD生成的,而该stage要确认所有依赖的stage都执行完,才可以执行。也就是通过getMessingParentStages方法判断的。

这个方法用一个栈来实现递归的切分stage,然后返回一个宽依赖的HashSet,如果是宽依赖类型就会调用

之后提交stage,根据missingStage执行各个stage。划分DAG结束

submitStage会依次执行这个DAG中的stage,如果有父stage就先执行父stage,否则就提交这个stage,加入watingstages中。

示例:

scala> sc.makeRDD(Seq(1,2,3)).count

16/10/28 17:54:59 [INFO] [org.apache.spark.SparkContext:59] - Starting job: count at <console>:13

16/10/28 17:54:59 [INFO] [org.apache.spark.scheduler.DAGScheduler:59] - Got job 0 (count at <console>:13) with 22 output partitions (allowLocal=false)

16/10/28 17:54:59 [INFO] [org.apache.spark.scheduler.DAGScheduler:59] - Final stage: Stage 0(count at <console>:13)

16/10/28 17:54:59 [INFO] [org.apache.spark.scheduler.DAGScheduler:59] - Parents of final stage: List()

16/10/28 17:54:59 [INFO] [org.apache.spark.scheduler.DAGScheduler:59] - Missing parents: List()

16/10/28 17:54:59 [INFO] [org.apache.spark.scheduler.DAGScheduler:59] - Submitting Stage 0 (ParallelCollectionRDD[0] at makeRDD at <console>:13), which has no missing parents

scala> sc.makeRDD(Seq(1,2,3)).map(l =>(l,1)).reduceByKey((v1,v2) => v1+v2).collect
16/10/28 18:00:07 [INFO] [org.apache.spark.SparkContext:59] - Starting job: collect at <console>:13
16/10/28 18:00:07 [INFO] [org.apache.spark.scheduler.DAGScheduler:59] - Registering RDD 2 (map at <console>:13)
16/10/28 18:00:07 [INFO] [org.apache.spark.scheduler.DAGScheduler:59] - Got job 1 (collect at <console>:13) with 22 output partitions (allowLocal=false)
16/10/28 18:00:07 [INFO] [org.apache.spark.scheduler.DAGScheduler:59] - Final stage: Stage 2(collect at <console>:13)
16/10/28 18:00:07 [INFO] [org.apache.spark.scheduler.DAGScheduler:59] - Parents of final stage: List(Stage 1)
16/10/28 18:00:07 [INFO] [org.apache.spark.scheduler.DAGScheduler:59] - Missing parents: List(Stage 1)
16/10/28 18:00:07 [INFO] [org.apache.spark.scheduler.DAGScheduler:59] - Submitting Stage 1 (MappedRDD[2] at map at <console>:13), which has no missing parents

collect依赖于reduceByKey,reduceByKey依赖于map,而reduceByKey是一个Shuffle操作,故会先提交map (Stage 1 (MappedRDD[2] at map at <console>:13))

Spark DAGSheduler生成Stage过程分析实验的更多相关文章

  1. Spark2.2+ES6.4.2(三十一):Spark下生成测试数据,并在Spark环境下使用BulkProcessor将测试数据入库到ES

    Spark下生成2000w测试数据(每条记录150列) 使用spark生成大量数据过程中遇到问题,如果sc.parallelize(fukeData, 64);的记录数特别大比如500w,1000w时 ...

  2. Spark 资源调度包 stage 类解析

    spark 资源调度包 Stage(阶段) 类解析 Stage 概念 Spark 任务会根据 RDD 之间的依赖关系, 形成一个DAG有向无环图, DAG会被提交给DAGScheduler, DAGS ...

  3. spark job, stage ,task介绍。

    1. spark 如何执行程序? 首先看下spark 的部署图: 节点类型有: 1. master 节点: 常驻master进程,负责管理全部worker节点. 2. worker 节点: 常驻wor ...

  4. Spark Streaming应用启动过程分析

    本文为SparkStreaming源码剖析的第三篇,主要分析SparkStreaming启动过程. 在调用StreamingContext.start方法后,进入JobScheduler.start方 ...

  5. spark 中划分stage的思路

    窄依赖指父RDD的每一个分区最多被一个子RDD的分区所用,表现为 一个父RDD的分区对应于一个子RDD的分区 两个父RDD的分区对应于一个子RDD 的分区. 宽依赖指子RDD的每个分区都要依赖于父RD ...

  6. spark中job stage task关系

    1.1 例子,美国 1880 - 2014 年新生婴儿数据统计 目标:用美国 1880 - 2014 年新生婴儿的数据来做做简单的统计 数据源:https://catalog.data.gov 数据格 ...

  7. Spark Streaming和Flume-NG对接实验

    Spark Streaming是一个新的实时计算的利器,而且还在快速的发展.它将输入流切分成一个个的DStream转换为RDD,从而可以使用Spark来处理.它直接支持多种数据源:Kafka, Flu ...

  8. Spark(四十八):Spark MetricsSystem信息收集过程分析

    MetricsSystem信息收集过程 参考: <Apache Spark源码走读之21 -- WEB UI和Metrics初始化及数据更新过程分析> <Spark Metrics配 ...

  9. spark 笔记 8: Stage

    Stage 是一组独立的任务,他们在一个job中执行相同的功能(function),功能的划分是以shuffle为边界的.DAG调度器以拓扑顺序执行同一个Stage中的task. /** * A st ...

随机推荐

  1. Data组件的JSON数据格式

    {     // "@type" - 类型标识,"table"表明这个JSON是一个table结构的数据     "@type" : &qu ...

  2. sqlmap 帮助信息

    Usage: sqlmap.py [options] 选项: -h, --help 显示基本的帮助信息并退出 -hh 显示高级的帮助信息并退出 --version 显示程序版本号并退出 -v VERB ...

  3. Eclipse '/RemoteSystemsTempFiles'错误

    错误代码 Could not write metadata for '/RemoteSystemsTempFiles'.D:\workspace4.5\.metadata\.plugins\org.e ...

  4. 华为荣耀6 H60-L02/L12(联通版)救砖包【适用于无限重启】

    本帖最后由 HOT米粒 于 2014-11-16 20:43 编辑 华为荣耀6 H60-L02/L12(联通版)救砖包[适用于无限重启]说明: 1.本工具包用于华为荣耀6 H60-L02(联通版): ...

  5. SqlServer查询表中各列名称、表中列数

    查询表名为tb_menu的所有列名 select name from syscolumns where id=object_id('tb_menu')     查询表名为tb_menu的所有列名个数 ...

  6. 【校验】TCP和UDP的校验和

    一开始,私以为校验和只是简单的求和得到的结果,后来在TCP和UDP里面看到使用的校验和方式有点奇怪--二进制反码(循环进位)求和. 人类的认知过程必将从简单到复杂,看下这个二进制反码循环求和是啥子意思 ...

  7. 代码中使用StoryBoard和DoubleAnimation的方法

    TranslateTransformを対象に.DoubleAnimation型のアニメーションを使用して.TranslateTransform.Xプロパティを ”-1 * Imageコントロールの幅” ...

  8. 【BZOJ3940】【BZOJ3942】[Usaco2015 Feb]Censoring AC自动机/KMP/hash+栈

    [BZOJ3942][Usaco2015 Feb]Censoring Description Farmer John has purchased a subscription to Good Hoov ...

  9. js中使用new Date(str)创建时间对象不兼容firefox和ie的解决方式

    /** * 解决 ie,火狐浏览器不兼容new Date(s) * @param strDate * 返回 date对象 * add by zyf at 2015年11月5日 */ function ...

  10. 免费制作gif图片工具

    怎样制作gif图片在你的blog里面呢? 今天给大家推荐一款免费的gif制作软件:GifCam 上面用到的下载地址: http://downloads.tomsguide.com/GifCam,030 ...