树形dp+第二类斯特林数

又是这种形式,只不过这次不用伯努利数了

直接搞肯定不行,我们化简一下式子,考虑x^n的组合意义,是把n个物品放到x个箱子里的方案数。那么就等于这个i=1->n,sigma(s[n,i]*A(x,i)),就是枚举要分成几组,这个用斯特林数算,然后把这些组放进箱子里,那么就是A(x,i),A是排列,但是这样还是不行,我们把A(x,i)=C(x,i)*i!,这样就行了,阶乘和斯特林数可以提出来,只要预处理一个点的组合数就行了,也就是∑i=1->n ∑ j=1->k C(dis(u,i),j),这个东西我们可以利用组合数的性质dp,也就是c[i][j]=c[i-1][j]+c[i-1][j-1],记住要减去重复的

#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + , M = , P = ;
int n, m, L, now, A, B, Q;
int s[M][M], up[N][M], down[N][M], fac[M];
vector<int> G[N];
void dfs(int u, int last)
{
down[u][] = ;
for(int i = ; i < G[u].size(); ++i)
{
int v = G[u][i];
if(v == last) continue;
dfs(v, u);
down[u][] = (down[u][] + down[v][]) % P;
for(int j = ; j <= m; ++j) down[u][j] = ((down[u][j] + (down[v][j - ] + down[v][j]) % P) % P) % P;
}
}
void dfs1(int u, int last)
{
if(last)
{
up[u][] = n - down[u][];
for(int i = ; i <= m; ++i)
{
up[u][i] = (up[u][i] + ((up[last][i] + up[last][i - ] + down[last][i] + down[last][i - ] - down[u][i] - (down[u][i - ] << )) % P + P) % P) % P;
if(i > ) up[u][i] = ((up[u][i] - down[u][i - ]) % P + P) % P;
}
}
for(int i = ; i < G[u].size(); ++i)
{
int v = G[u][i];
if(v == last) continue;
dfs1(v, u);
}
}
int main()
{
scanf("%d%d%d%d%d%d%d", &n, &m, &L, &now, &A, &B, &Q);
for(int i = ; i < n; ++i)
{
now = (now * A + B) % Q;
int tmp = min(i, L);
int u = i - now % tmp, v = i + ;
G[u].push_back(v);
G[v].push_back(u);
}
s[][] = fac[] = ;
for(int i = ; i <= m; ++i)
{
fac[i] = fac[i - ] * i % P;
for(int j = ; j <= m; ++j)
s[i][j] = (s[i - ][j] * j % P + s[i - ][j - ]) % P;
}
dfs(, );
dfs1(, );
for(int i = ; i <= n; ++i)
{
int ans = ;
for(int j = ; j <= m; ++j) ans = (ans + s[m][j] * fac[j] % P * (up[i][j] + down[i][j]) % P) % P;
printf("%d\n", ans);
}
return ;
}

bzoj2159的更多相关文章

  1. BZOJ2159 Crash的文明世界(树形dp+斯特林数)

    根据组合意义,有nk=ΣC(n,i)*i!*S(k,i) (i=0~k),即将k个有标号球放进n个有标号盒子的方案数=在n个盒子中选i个将k个有标号球放入并且每个盒子至少有一个球. 回到本题,可以令f ...

  2. 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)

    [BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...

  3. BZOJ2159 Crash 的文明世界 【第二类斯特林数 + 树形dp】

    题目链接 BZOJ2159 题解 显然不能直接做点分之类的,观察式子中存在式子\(n^k\) 可以考虑到 \[n^k = \sum\limits_{i = 0} \begin{Bmatrix} k \ ...

  4. BZOJ2159 Crash的文明世界

    Description 传送门 给你一个n个点的树,边权为1. 对于每个点u, 求:\(\sum_{i = 1}^{n} distance(u, i)^{k}\) $ n \leq 50000, k ...

  5. BZOJ2159 : Crash 的文明世界

    $x^k=\sum_{i=1}^k Stirling2(k,i)\times i!\times C(x,i)$ 设$f[i][j]=\sum_{k=1}^n C(dist(i,k),j)$. 则可以利 ...

  6. 【BZOJ2159】Crash的文明世界

    [2011集训贾志鹏]Crash的文明世界 Description Crash小朋友最近迷上了一款游戏--文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和 ...

  7. [BZOJ2159]Crash的文明世界(斯特林数+树形DP)

    题意:给定一棵树,求$S(i)=\sum_{j=1}^{n}dist(i,j)^k$.题解:根据斯特林数反演得到:$n^m=\sum_{i=0}^{n}C(n,i)\times i!\times S( ...

  8. 【BZOJ2159】Crash的文明世界 斯特林数+树形dp

    Description Crash 小朋友最近迷上了一款游戏--文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和别的国家交流,或是通过战争征服别的国家.现 ...

  9. 【bzoj2159】Crash 的文明世界(树形dp+第二类斯特林数)

    传送门 题意: 给出一颗\(n\)个结点的树,对于每个结点输出其答案,每个结点的答案为\(ans_x=\sum_{i=1}^ndis(x,i)^k\). 思路: 我们对于每个结点将其答案展开: \[ ...

随机推荐

  1. leetcode 题解 || Remove Nth Node From End of List 问题

    problem: Given a linked list, remove the nth node from the end of list and return its head. For exam ...

  2. python(18)- 协程函数及应用

    协程 def init(func): def wrapper(*args,**kwargs): obj = func(*args,**kwargs) next(obj) return obj retu ...

  3. python(36)- 测试题

    1.8<<2等于? 32 “<<”位运算 264 132 64 32 16 8 4 2 1 原始位置 0 0 0 0 0 1 0 0 0 想左位移2位 0 0 0 1 0 0 ...

  4. UiAutomator源代码分析之获取控件信息

    依据上一篇文章<UiAutomator源代码分析之注入事件>開始时提到的计划,这一篇文章我们要分析的是第二点: 怎样获取控件信息 我们在測试脚本中初始化一个UiObject的时候一般是像下 ...

  5. js event 的target 和currentTarget

    target  点击的实际tag currentTarget 绑定事件的target

  6. Java 语法清单

      Java 语法清单 Java 语法清单翻译自 egek92 的 JavaCheatSheet,从属于笔者的 Java 入门与实践系列.时间仓促,笔者只是简单翻译了些标题与内容整理,支持原作者请前往 ...

  7. 循序渐进学Python2变量与输入

    新建一个test.py文件,右键选择“Edit with IDLE”,编辑完成后,Ctrl+S保存,然后按下F5就可以执行代码了. 注:IDLE是Python官方提供的一个IDE工具. 目录 [隐藏] ...

  8. GO 入门(一)

    1.下载安装go环境          https://golang.org/dl/ 2.检查环境变量配置情况,安装过程中会自动配置:GOROOT    和    Path 3.建立go工作区,并配置 ...

  9. Xcode各个版本及模拟器下载

    如果你嫌在 App Store 下载 Xcode 太慢,你也可以选择从网络上下载: Xcode下载(Beta版打的包是不能提交到App Store上的) 绝对官方源!!!绝对官方源!!!绝对官方源!! ...

  10. uboot显示logo的时候发现颜色偏黄【学习笔记】

    平台信息:内核:linux3.0.68 系统:android6.0平台:rk3288 将一张图片烧录进logo分区,发现在uboot读取这张图片并显示的时候发现颜色偏黄,解决办法,在烧录bmp图片的时 ...