Hive调优实战
Hive是将符合SQL语法的字符串解析生成可以在Hadoop上执行的MapReduce的工具。
使用Hive尽量按照分布式计算的一些特点来设计sql,和传统关系型数据库有区别,所以需要去掉原有关系型数据库下开发的一些固有思维。
优化时,把hive sql当做map reduce程序来读,理解hadoop的核心能力,是hive优化的根本。
长期观察hadoop处理数据的过程,有几个显著的特征:
1. 不怕数据多,就怕数据倾斜。
2.对jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,没半小时是跑不完的。map reduce作业初始化的时间是比较长的。
3.对sum count来说,不存在数据倾斜问题。
4.对count(distinct ),效率较低,数据量一多,准出问题,如果是多count(distinct )效率更低。
优化可以从几个方面着手:
1. 好的模型设计事半功倍。
2. 解决数据倾斜问题。
3. 减少job数。
4. 设置合理的map reduce的task数,能有效提升性能。(比如,10w+级别的计算,用160个reduce,那是相当的浪费,1个足够)。
5. 自己动手写sql解决数据倾斜问题是个不错的选择。set hive.groupby.skewindata=true;这是通用的算法优化,但算法优化总是漠视业务,习惯性提供通用的解决方法。 Etl开发人员更了解业务,更了解数据,所以通过业务逻辑解决倾斜的方法往往更精确,更有效。
6. 对count(distinct)采取漠视的方法,尤其数据大的时候很容易产生倾斜问题,不抱侥幸心理。自己动手,丰衣足食。
7. 对小文件进行合并,是行至有效的提高调度效率的方法,假如我们的作业设置合理的文件数,对云梯的整体调度效率也会产生积极的影响。
8. 优化时把握整体,单个作业最优不如整体最优。
迁移和优化过程中的案例:
问题1:如日志中,常会有信息丢失的问题,比如全网日志中的user_id,如果取其中的user_id和bmw_users关联,就会碰到数据倾斜的问题。
方法:解决数据倾斜问题
解决方法(1). User_id为空的不参与关联,例如:
Select *
From log a
Join bmw_users b
On a.user_id is not null
And a.user_id = b.user_id
Union all
Select *
from log a
where a.user_id is null;
解决方法(2):
Select *
from log a
left outer join bmw_users b
on case when a.user_id is null then concat(‘dp_hive’,rand() ) else a.user_id end = b.user_id;
总结:2比1效率更好,不但io少了,而且作业数也少了。1方法log读取两次,jobs是2。2方法job数是1 。这个优化适合无效id(比如-99,’’,null等)产生的倾斜问题。把空值的key变成一个字符串加上随机数,就能把倾斜的数据分到不同的reduce上 ,解决数据倾斜问题。因为空值不参与关联,即使分到不同的reduce上,也不影响最终的结果。附上hadoop通用关联的实现方法(关联通过二次排序实现的,关联的列为parition key,关联的列c1和表的tag组成排序的group key,根据parition key分配reduce。同一reduce内根据group key排序)。
问题2:数据倾斜__不同数据类型id的关联。
一张表s8的日志,每个商品一条记录,要和商品表关联。但关联却碰到倾斜的问题。s8的日志中有字符串商品id,也有数字的商品id,类型是string的,但商品中的数字id是bigint的。猜测问题的原因是把s8的商品id转成数字id做hash来分配reduce,所以字符串id的s8日志,都到一个reduce上了,解决的方法验证了这个猜测。
方法:把数字类型转换成字符串类型
Select * from s8_log a
Left outer join r_auction_auctions b
On a.auction_id = cast(b.auction_id as string);
问题3:利用hive 对UNION ALL的优化的特性
hive对union all优化只局限于非嵌套查询。
比如以下的例子:
select * from
(select * from t1
Group by c1,c2,c3
Union all
Select * from t2
Group by c1,c2,c3) t3
Group by c1,c2,c3;
从业务逻辑上说,子查询内的group by 怎么都看显得多余(功能上的多余,除非有count(distinct)),如果不是因为hive bug或者性能上的考量(曾经出现如果不子查询group by ,数据得不到正确的结果的hive bug)。所以这个hive按经验转换成
select * from
(select * from t1
Union all
Select * from t2
) t3
Group by c1,c2,c3;
经过测试,并未出现union all的hive bug,数据是一致的。mr的作业数有3减少到1。
t1相当于一个目录,t2相当于一个目录,那么对map reduce程序来说,t1,t2可以做为map reduce 作业的mutli inputs。那么,这可以通过一个map reduce 来解决这个问题。Hadoop的计算框架,不怕数据多,就怕作业数多。
但如果换成是其他计算平台如oracle,那就不一定了,因为把大的输入拆成两个输入,分别排序汇总后merge(假如两个子排序是并行的话),是有可能性能更优的(比如希尔排序比冒泡排序的性能更优)。
问题4:比如推广效果表要和商品表关联,效果表中的auction id列既有商品id,也有数字id,和商品表关联得到商品的信息。那么以下的hive sql性能会比较好
Select * from effect a
Join (select auction_id as auction_id from auctions
Union all
Select auction_string_id as auction_id from auctions
) b
On a.auction_id = b.auction_id。
比分别过滤数字id,字符串id然后分别和商品表关联性能要好。
这样写的好处,1个MR作业,商品表只读取一次,推广效果表只读取一次。把这个sql换成MR代码的话,map的时候,把a表的记录打上标签a,商品表记录每读取一条,打上标签b,变成两个<key ,value>对,<b,数字id>,<b,字符串id>。所以商品表的hdfs读只会是一次。
问题5:先join生成临时表,在union all还是写嵌套查询,这是个问题。比如以下例子:
Select *
From (select *
From t1
Uion all
select *
From t4
Union all
Select *
From t2
Join t3
On t2.id = t3.id
) x
Group by c1,c2;
这个会有4个jobs。假如先join生成临时表的话t5,然后union all,会变成2个jobs。
Insert overwrite table t5
Select *
From t2
Join t3
On t2.id = t3.id
;
Select * from (t1 union all t4 union all t5) ;
hive在union all优化上可以做得更智能(把子查询当做临时表),这样可以减少开发人员的负担。出现这个问题的原因应该是union all目前的优化只局限于非嵌套查询。如果写MR程序这一点也不是问题,就是multi inputs。
问题6:使用map join解决数据倾斜的常景下小表关联大表的问题,但如果小表很大,怎么解决。这个使用的频率非常高,但如果小表很大,大到map join会出现bug或异常,这时就需要特别的处理。云瑞和玉玑提供了非常给力的解决方案。以下例子:
Select * from log a
Left outer join members b
On a.memberid = b.memberid.
Members有600w+的记录,把members分发到所有的map上也是个不小的开销,而且map join不支持这么大的小表。如果用普通的join,又会碰到数据倾斜的问题。
解决方法:
Select /*+mapjoin(x)*/* from log a
Left outer join (select /*+mapjoin(c)*/d.*
From (select distinct memberid from log ) c
Join members d
On c.memberid = d.memberid
)x
On a.memberid = b.memberid。
先根据log取所有的memberid,然后mapjoin 关联members取今天有日志的members的信息,然后在和log做mapjoin。
假如,log里memberid有上百万个,这就又回到原来map join问题。所幸,每日的会员uv不会太多,有交易的会员不会太多,有点击的会员不会太多,有佣金的会员不会太多等等。所以这个方法能解决很多场景下的数据倾斜问题。
问题7:HIVE下通用的数据倾斜解决方法,double被关联的相对较小的表,这个方法在mr的程序里常用。还是刚才的那个问题:
Select * from log a
Left outer join (select /*+mapjoin(e)*/
memberid, number
From members d
Join num e
) b
On a.memberid= b.memberid
And mod(a.pvtime,30)+1=b.number。
Num表只有一列number,有30行,是1,30的自然数序列。就是把member表膨胀成30份,然后把log数据根据memberid和pvtime分到不同的reduce里去,这样可以保证每个reduce分配到的数据可以相对均匀。就目前测试来看,使用mapjoin的方案性能稍好。后面的方案适合在map join无法解决问题的情况下。
长远设想,把如下的优化方案做成通用的hive优化方法
1. 采样log表,哪些memberid比较倾斜,得到一个结果表tmp1。由于对计算框架来说,所有的数据过来,他都是不知道数据分布情况的,所以采样是并不可少的。Stage1
2. 数据的分布符合社会学统计规则,贫富不均。倾斜的key不会太多,就像一个社会的富人不多,奇特的人不多一样。所以tmp1记录数会很少。把tmp1和members做map join生成tmp2,把tmp2读到distribute file cache。这是一个map过程。Stage2
3. map读入members和log,假如记录来自log,则检查memberid是否在tmp2里,如果是,输出到本地文件a,否则生成<memberid,value>的key,value对,假如记录来自member,生成<memberid,value>的key,value对,进入reduce阶段。Stage3.
4. 最终把a文件,把Stage3 reduce阶段输出的文件合并起写到hdfs。
这个方法在hadoop里应该是能实现的。Stage2是一个map过程,可以和stage3的map过程可以合并成一个map过程。
这个方案目标就是:倾斜的数据用mapjoin,不倾斜的数据用普通的join,最终合并得到完整的结果。用hive sql写的话,sql会变得很多段,而且log表会有多次读。倾斜的key始终是很少的,这个在绝大部分的业务背景下适用。那是否可以作为hive针对数据倾斜join时候的通用算法呢?
问题8:多粒度(平级的)uv的计算优化,比如要计算店铺的uv。还有要计算页面的uv,pvip.
方案1:
Select shopid,count(distinct uid)
From log group by shopid;
Select pageid, count(distinct uid),
From log group by pageid;
由于存在数据倾斜问题,这个结果的运行时间是非常长的。
方案二:
From log
Insert overwrite table t1 (type=’1’)
Select shopid
Group by shopid ,acookie
Insert overwrite table t1 (type=’2’)
Group by pageid,acookie;
店铺uv:
Select shopid,sum(1)
From t1
Where type =’1’
Group by shopid ;
页面uv:
Select pageid,sum(1)
From t1
Where type =’1’
Group by pageid ;
这里使用了multi insert的方法,有效减少了hdfs读,但multi insert会增加hdfs写,多一次额外的map阶段的hdfs写。使用这个方法,可以顺利的产出结果。
方案三:
Insert into t1
Select type,type_name,’’ as uid
From (
Select ‘page’ as type,
Pageid as type_name,
Uid
From log
Union all
Select ‘shop’ as type,
Shopid as type_name,
Uid
From log ) y
Group by type,type_name,uid;
Insert into t2
Select type,type_name,sum(1)
From t1
Group by type,type_name;
From t2
Insert into t3
Select type,type_name,uv
Where type=’page’
Select type,type_name,uv
Where type=’shop’ ;
最终得到两个结果表t3,页面uv表,t4,店铺结果表。从io上来说,log一次读。但比方案2少次hdfs写(multi insert有时会增加额外的map阶段hdfs写)。作业数减少1个到3,有reduce的作业数由4减少到2,第三步是一个小表的map过程,分下表,计算资源消耗少。但方案2每个都是大规模的去重汇总计算。
这个优化的主要思路是,map reduce作业初始化话的时间是比较长,既然起来了,让他多干点活,顺便把页面按uid去重的活也干了,省下log的一次读和作业的初始化时间,省下网络shuffle的io,但增加了本地磁盘读写。效率提升较多。
这个方案适合平级的不需要逐级向上汇总的多粒度uv计算,粒度越多,节省资源越多,比较通用。
问题9:多粒度,逐层向上汇总的uv结算。比如4个维度,a,b,c,d,分别计算a,b,c,d,uv;
a,b,c,uv;a,b,uv;a;uv,total uv4个结果表。这可以用问题8的方案二,这里由于uv场景的特殊性,多粒度,逐层向上汇总,就可以使用一次排序,所有uv计算受益的计算方法。
案例:目前mm_log日志一天有25亿+的pv数,要从mm日志中计算uv,与ipuv,一共计算
三个粒度的结果表
(memberid,siteid,adzoneid,province,uv,ipuv) R_TABLE_4
(memberid,siteid,adzoneid,uv,ipuv) R_TABLE_3
(memberid,siteid,uv,ipuv) R_TABLE_2
第一步:按memberid,siteid,adzoneid,province,使用group去重,产生临时表,对cookie,ip
打上标签放一起,一起去重,临时表叫T_4;
Select memberid,siteid,adzoneid,province,type,user
From(
Select memberid,siteid,adzoneid,province,‘a’ type ,cookie as user from mm_log where ds=20101205
Union all
Select memberid,siteid,adzoneid,province,‘i’ type ,ip as user from mm_log where ds=20101205
) x group by memberid,siteid,adzoneid,province,type,user ;
第二步:排名,产生表T_4_NUM.Hadoop最强大和核心能力就是parition 和 sort.按type,acookie分组,
Type,acookie,memberid,siteid,adzoneid,province排名。
Select * ,
row_number(type,user,memberid,siteid,adzoneid ) as adzone_num , row_number(type,user,memberid,siteid ) as site_num,
row_number(type,user,memberid ) as member_num,
row_number(type,user ) as total_num
from (select * from T_4 distribute by type,user sort by type,user, memberid,siteid,adzoneid ) x;
这样就可以得到不同层次粒度上user的排名,相同的user id在不同的粒度层次上,排名等于1的记录只有1条。取排名等于1的做sum,效果相当于Group by user去重后做sum操作。
第三步:不同粒度uv统计,先从最细粒度的开始统计,产生结果表R_TABLE_4,这时,结果集只有10w的级别。
如统计memberid,siteid,adzoneid,provinceid粒度的uv使用的方法就是
Select memberid,siteid,adzoneid, provinceid,
sum(case when type =’a’ then cast(1) as bigint end ) as province_uv ,
sum(case when type =’i’ then cast(1) as bigint end ) as province_ip ,
sum(case when adzone_num =1 and type =’a’ then cast(1) as bigint end ) as adzone_uv ,
sum(case when adzone_num =1 and type =’i’ then cast(1) as bigint end ) as adzone_ip ,
sum(case when site_num =1 and type =’a’ then cast(1) as bigint end ) as site_uv ,
sum(case when site_num =1 and type =’i’ then cast(1) as bigint end ) as site_ip ,
sum(case when member_num =1 and type =’a’ then cast(1) as bigint end ) as member_uv ,
sum(case when member_num =1 and type =’i’ then cast(1) as bigint end ) as member_ip ,
sum(case when total_num =1 and type =’a’ then cast(1) as bigint end ) as total_uv ,
sum(case when total_num =1 and type =’i’ then cast(1) as bigint end ) as total_ip ,
from T_4_NUM
group by memberid,siteid,adzoneid, provinceid ;
广告位粒度的uv的话,从R_TABLE_4统计,这是源表做10w级别的统计
Select memberid,siteid,adzoneid,sum(adzone_uv),sum(adzone_ip)
From R_TABLE_4
Group by memberid,siteid,adzoneid;
memberid,siteid的uv计算 ,
memberid的uv计算,
total uv 的计算也都从R_TABLE_4汇总。
附上HIVE_SQL写法基本原则:
1:尽量尽早地过滤数据,减少每个阶段的数据量,对于分区表要加分区,同时只选择需要使用到的字段
select ... from A
join B
on A.key = B.key
where A.userid>10
and B.userid<10
and A.dt='20120417'
and B.dt='20120417';
应该改写为:
select .... from (select .... from A
where dt='201200417'
and userid>10
) a
join ( select .... from B
where dt='201200417'
and userid < 10
) b
on a.key = b.key;
2:尽量原子化操作,尽量避免一个SQL包含复杂逻辑
可以使用中间表来完成复杂的逻辑
drop table if exists tmp_table_1;
create table if not exists tmp_table_1 as
select ......;
drop table if exists tmp_table_2;
create table if not exists tmp_table_2 as
select ......;
drop table if exists result_table;
create table if not exists result_table as
select ......;
drop table if exists tmp_table_1;
drop table if exists tmp_table_2;
3:单个SQL所起的JOB个数尽量控制在5个以下
4:慎重使用mapjoin,一般行数小于2000行,大小小于1M(扩容后可以适当放大)的表才能使用,小表要注意放在join的左边(目前TCL里面很多都小表放在join的右边)。
否则会引起磁盘和内存的大量消耗
5:写SQL要先了解数据本身的特点,如果有join ,group操作的话,要注意是否会有数据倾斜
如果出现数据倾斜,应当做如下处理:
set hive.exec.reducers.max=200;
set mapred.reduce.tasks= 200;---增大Reduce个数
set hive.groupby.mapaggr.checkinterval=100000 ;--这个是group的键对应的记录条数超过这个值则会进行分拆,值根据具体数据量设置
set hive.groupby.skewindata=true; --如果是group by过程出现倾斜 应该设置为true
set hive.skewjoin.key=100000; --这个是join的键对应的记录条数超过这个值则会进行分拆,值根据具体数据量设置
set hive.optimize.skewjoin=true;--如果是join 过程出现倾斜 应该设置为true
6:如果union all的部分个数大于2,或者每个union部分数据量大,应该拆成多个insert into 语句,实际测试过程中,执行时间能提升50%
insert overwite table tablename partition (dt= ....)
select ..... from (
select ... from A
union all
select ... from B
union all
select ... from C
) R
where ...;
可以改写为:
insert into table tablename partition (dt= ....)
select .... from A
WHERE ...;
insert into table tablename partition (dt= ....)
select .... from B
WHERE ...;
insert into table tablename partition (dt= ....)
select .... from C
WHERE ...;
Hive调优实战的更多相关文章
- Hive调优实战[转]
Hive优化总结 [转自:http://sznmail.iteye.com/blog/1499789] 优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解hadoo ...
- JVM 性能调优实战之:一次系统性能瓶颈的寻找过程
玩过性能优化的朋友都清楚,性能优化的关键并不在于怎么进行优化,而在于怎么找到当前系统的性能瓶颈.性能优化分为好几个层次,比如系统层次.算法层次.代码层次…JVM 的性能优化被认为是底层优化,门槛较高, ...
- JVM 性能调优实战之:使用阿里开源工具 TProfiler 在海量业务代码中精确定位性能代码
本文是<JVM 性能调优实战之:一次系统性能瓶颈的寻找过程> 的后续篇,该篇介绍了如何使用 JDK 自身提供的工具进行 JVM 调优将 TPS 由 2.5 提升到 20 (提升了 7 倍) ...
- JVM调优实战
JVM调优实战 文档修订记录 版本 日期 撰写人 审核人 批准人 变更摘要 & 修订位置 ...
- spring-petclinic性能调优实战(转)
1.spring-petclinic介绍 spring-petclinic是spring官方做的一个宠物商店,结合了spring和其他一些框架的最佳实践. 架构如下: 1)前端 Thymeleaf做H ...
- Java垃圾收集调优实战
1 资料 JDK5.0垃圾收集优化之--Don't Pause(花钱的年华) 编写对GC友好,又不泄漏的代码(花钱的年华) JVM调优总结 JDK 6所有选项及默认值 2 GC日志打印 GC调 ...
- 【Hive六】Hive调优小结
Hive调优 Hive调优 Fetch抓取 本地模式 表的优化 小表.大表Join 大表Join大表 MapJoin Group By Count(Distinct) 去重统计 行列过滤 动态分区调整 ...
- 【Hive】Hive笔记:Hive调优总结——数据倾斜,join表连接优化
数据倾斜即为数据在节点上分布不均,是常见的优化过程中常见的需要解决的问题.常见的Hive调优的方法:列剪裁.Map Join操作. Group By操作.合并小文件. 一.表现 1.任务进度长度为99 ...
- Java虚拟机性能监控与调优实战
From: https://c.m.163.com/news/a/D7B0C6Q40511PFUO.html?spss=newsapp&fromhistory=1 Java虚拟机性能监控与调 ...
随机推荐
- 学习 JSP:第一步Eclipse+Tomcat+jre(配置环境)
[下载软件](例子version:版本号) Eclipse从官网下载(version:4.7)http://www.eclipse.org/downloads/ jre从官网下载(version:1. ...
- iOS-OAuth认证
OAuth授权 OAuth授权分四步: 第一步,应用向服务提供方申请请求令牌(Request Token),服务提供方验证通过后将令牌返回.这个步骤由于涉及到应用帐号密码,在应用的服务端发起,所以这个 ...
- RSA签名
RSA签名: /** * RSA签名 * @param content 待签名数据 * @param privateKey 商户私钥 * @return 签名值 */public static ...
- [暑假集训--数位dp]cf55D Beautiful numbers
Volodya is an odd boy and his taste is strange as well. It seems to him that a positive integer numb ...
- tomcat Enabling JMX Remote
wiki 利用JMX做存活监控 cat /opt/wiki/work/bin/setenv.sh | grep jmxremoteCATALINA_OPTS="-Dcom.sun.manag ...
- 主机ping不通虚拟机,但是虚拟机能ping通主机
一.虚拟机网络连接方式选择Nat 二. 关闭Linux防火墙命令:service iptables stop / service firewalld stop 查看Linux防火墙状态命令:servi ...
- Codevs 1501 二叉树的最大宽度和高度
1501 二叉树最大宽度和高度 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver 题目描述 Description 给出一个二叉树,输出它的最大宽度和高度. 输入描 ...
- 系统软键盘">Android在外接物理键盘时,如何强制调用系统软键盘?
第一次写,写的不好请见谅 物理键盘映射过程: 手机/system/usr/keylayout/*.kl :内核将keyCode映射成有含义的字符串KeycodeLabels.h : framework ...
- CI调试应用程序
该分析器将在页面下方显示基准测试结果,运行过的 SQL 语句,以及 $_POST 数据.这些信息有助于开发过程中的调试和优化. 在控制器中设置以下方法以激活该分析器: $this->output ...
- Struts学习总结(一)
1,需要包下载地址: http://archive.apache.org/dist/struts/binaries/ 2.报错:org/apache/commons/lang3/StringUtils ...