题面

传送门

思路

首先有一个容斥原理的结论:可以组成三角形的三元组数量=所有三元组-不能组成三角形的三元组

也就是说我们只要求出所有不能组成三角形的三元组即可

我们考虑三元组(a,b,c),a<=b<=c,其不能组成三元组的条件是a+b<=c

然后,这道题中并没有顺序限制

于是我们考虑用sum[i]表示长度为i的木棍的个数

将sum[i]为$x^i$的系数的多项式自乘,得到一个2*n项的多项式

那么新多项式(设为S)的第i项系数S[i]就代表着选择总和为i的两条边的方法数量

注意这个S[i]并不就是最后的答案,因为如果i是偶数,那么原来长度为i/2的边会被算两遍,所以要减去sum[i/2]

同时,这样处理以后的所有S[i]还要除二,因为会出现(i,j)(j,i)重复计算的情况

最后,我们维护sum的后缀和suf,答案就是$\sum_{i=1}{maxlen}S[i]suf[i]$了

不要忘记用所有三元组的数量减掉这个答案

Code:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(ch>'9'||ch<'0'){
if(ch=='-') flag=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9') re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
struct complex{
double x,y;
complex(double xx=0,double yy=0){x=xx;y=yy;}
complex operator +(const complex &b){return complex(b.x+x,b.y+y);}
complex operator -(const complex &b){return complex(-b.x+x,-b.y+y);}
complex operator *(const complex &b){return complex(x*b.x-y*b.y,x*b.y+y*b.x);}
}A[600010];
const double pi=acos(-1.0);
int n,sum[300010],limit=1,cnt=0,m,suf[300010],r[600010],maxn;
void fft(complex *a,double type){
int i,mid,j,k,R;complex w,wn,x,y;
for(i=0;i<limit;i++) if(i<r[i]) swap(a[i],a[r[i]]);
for(mid=1;mid<limit;mid<<=1){
wn=complex(cos(pi/mid),type*sin(pi/mid));
for(R=mid<<1,j=0;j<limit;j+=R){
w=complex(1,0);
for(k=0;k<mid;k++,w=w*wn){
x=a[j+k];y=w*a[j+k+mid];
a[j+k]=x+y;
a[j+k+mid]=x-y;
}
}
}
}
ll f[300010];
int main(){
int T=read(),i,t1;ll ans,tot;
while(T--){
memset(suf,0,sizeof(suf));memset(sum,0,sizeof(sum));
n=read();m=0;limit=1;cnt=0;memset(r,0,sizeof(r));
memset(A,0,sizeof(A));ans=tot=(ll)n*(ll)(n-1)*(ll)(n-2)/6ll; for(i=1;i<=n;i++) t1=read(),sum[t1]++,A[t1].x++,m=max(m,t1);
for(i=m;i>=1;i--) suf[i]=suf[i+1]+sum[i]; maxn=m<<1;
while(limit<=maxn) limit<<=1,cnt++;
for(i=0;i<limit;i++) r[i]=((r[i>>1]>>1)|((i&1)<<(cnt-1))); fft(A,1);
for(i=0;i<=limit;i++) A[i]=A[i]*A[i];
fft(A,-1); for(i=0;i<=limit;i++){
f[i]=(ll)(A[i].x/limit+0.5);
if(!(i&1)) f[i]-=(ll)(sum[i>>1]);
f[i]>>=1; } for(i=0;i<=limit;i++) ans-=f[i]*(ll)suf[i];
printf("%.7lf\n",(double)ans/(double)tot);
}
}

[MUTC2013][bzoj3513] idiots [FFT]的更多相关文章

  1. bzoj 3513: [MUTC2013]idiots FFT

    bzoj 3513: [MUTC2013]idiots FFT 链接 bzoj 思路 参考了学姐TRTTG的题解 统计合法方案,最后除以总方案. 合法方案要不好统计,统计不合法方案. \(a+b< ...

  2. BZOJ3513[MUTC2013]idiots——FFT+生成函数

    题目描述 给定n个长度分别为a_i的木棒,问随机选择3个木棒能够拼成三角形的概率. 输入 第一行T(T<=100),表示数据组数. 接下来若干行描述T组数据,每组数据第一行是n,接下来一行有n个 ...

  3. 【bzoj3513】[MUTC2013]idiots FFT

    题目描述 给定n个长度分别为a_i的木棒,问随机选择3个木棒能够拼成三角形的概率. 输入 第一行T(T<=100),表示数据组数. 接下来若干行描述T组数据,每组数据第一行是n,接下来一行有n个 ...

  4. bzoj 3513 [MUTC2013]idiots FFT 生成函数

    [MUTC2013]idiots Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 806  Solved: 265[Submit][Status][Di ...

  5. 2019.01.02 bzoj3513: [MUTC2013]idiots(fft)

    传送门 fftfftfft经典题. 题意简述:给定nnn个长度分别为aia_iai​的木棒,问随机选择3个木棒能够拼成三角形的概率. 思路:考虑对于木棒构造出生成函数然后可以fftfftfft出两个木 ...

  6. bzoj千题计划168:bzoj3513: [MUTC2013]idiots

    http://www.lydsy.com/JudgeOnline/problem.php?id=3513 组成三角形的条件:a+b>c 其中,a<c,b<c 若已知 两条线段之和=i ...

  7. BZOJ3513: [MUTC2013]idiots

    Description 给定n个长度分别为a_i的木棒,问随机选择3个木棒能够拼成三角形的概率. Input 第一行T(T<=100),表示数据组数.接下来若干行描述T组数据,每组数据第一行是n ...

  8. bzoj 3513: [MUTC2013]idiots【生成函数+FFT】

    想了好长时间最后发现真是石乐志 第一反应就是两边之和大于第三边,但是这个东西必须要满足三次-- 任意的两边之和合通过生成函数套路+FFT求出来(记得去掉重复选取的),然后这任意两边之和大于任意第三边可 ...

  9. [bzoj3513][MUTC2013]idiots_FFT

    idiots bzoj-3513 MUTC-2013 题目大意:给定$n$根木棍,问随机选择三根能构成三角形的概率. 注释:$1\le n\le 3\cdot 10^5$,$1\le a_i\le 1 ...

随机推荐

  1. 机器学习_线性回归和逻辑回归_案例实战:Python实现逻辑回归与梯度下降策略_项目实战:使用逻辑回归判断信用卡欺诈检测

    线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足 ...

  2. cuda中当元素个数超过线程个数时的处理案例

    项目打包下载 当向量元素超过线程个数时的情况 向量元素个数为(33 * 1024)/(128 * 128)=2.x倍 /* * Copyright 1993-2010 NVIDIA Corporati ...

  3. java基础面试题:如何把一段逗号分割的字符串转换成一个数组? String s = "a" +"b" + "c" + "d";生成几个对象?

    package com.swift; public class Douhao_String_Test { public static void main(String[] args) { /* * 如 ...

  4. ES6学习(二):函数的扩展

    chapter07 函数的扩展 7.1 函数默认值 7.1.1 参数默认值简介 传统做法的弊端(||):如果传入的参数相等于(==)false的话,仍会被设为默认值,需要多加入一个if判断,比较麻烦. ...

  5. 牛客NOIP提高组R1 C保护(主席树)

    题意 题目链接 Sol Orz lyq 我们可以把一支军队(u, v)拆分为两个(u, lca)和(v, lca) 考虑一个点x,什么时候军队对它有贡献,肯定是u或v在他的子树内,且lca在他的子树外 ...

  6. Nginx+proxy_cache图片缓存

    搭建图片缓存机制的原理在于减少数据库的负担并加快静态资源的响应. 步骤: 1. vim /usr/local/nginx/conf/nginx.conf 2. http{     ...     .. ...

  7. Python中的set

    set_lst = [ ('集合容器不可哈希',), ('集合中的元素必须可哈希',), ('集合是无序的',), ('集合自动去重',), ('增',), ('删',), ('查',), ('集合运 ...

  8. [USACO]奶牛赛跑(逆序对)

    Description 约翰有 N 头奶牛,他为这些奶牛准备了一个周长为 C 的环形跑牛场.所有奶牛从起点同时起跑,奶牛在比赛中总是以匀速前进的,第 i 头牛的速度为 Vi.只要有一头奶牛跑完 L 圈 ...

  9. Linux 内核源码外编译 linux模块--编译驱动模块的基本方法

    1.先编写一个简单的hello模块,hello.c 源码如下: #ifndef __KERNEL__ # define __KERNEL__ #endif #ifndef MODULE # defin ...

  10. D3DXCreateTextureFromFile

    HRESULT D3DXCreateTextureFromFile( __in LPDIRECT3DDEVICE9 pDevice, __in LPCTSTR pSrcFile, __out LPDI ...