题意:http://www.lydsy.com/JudgeOnline/problem.php?id=3609

sol :博弈论

    通过打表找规律,发现答案是%m循环的,且当m为偶数时取反

    因为我太蒟蒻了QAQ,给不出证明

    我是这么想的:

      首先对于一组n,m,假如两个人都往一堆上放,满了以后再放下一堆,设赢的人为甲,输的人为乙

      那么甲一定会尽力维持这个局面,乙则会去破坏该局面,即乙会额外新开一堆

      那么甲会每次将乙新开的那堆往自己的一堆上放,最后形成若干个大小为m的堆以及两个和>m的堆

      所以答案%m循环,至于m为偶取反可以打表看出来QAQ

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
using namespace std;
int n,m,a,b,ans;
int main()
{
int T;scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
a=(n-)%m%,b=(n-)/m%;
ans=a^; if(m%==) ans^=b;
printf("%d\n",ans);
}
return ;
}

bzoj3609【HEOI2014】人人尽说江南好的更多相关文章

  1. BZOJ3609 Heoi2014 人人尽说江南好【推理+结论】

    BZOJ3609 Heoi2014 人人尽说江南好 Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时 ...

  2. bzoj3609 [Heoi2014]人人尽说江南好 博弈

    [Heoi2014]人人尽说江南好 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 581  Solved: 420[Submit][Status][D ...

  3. [BZOJ3609][Heoi2014]人人尽说江南好 结论题

    Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家), 最近他 想起了小时候在江南玩过的一个游戏.     在过去,人们是要 ...

  4. bzoj3609 [Heoi2014]人人尽说江南好

    Description 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏.    在过去,人们是要边玩 ...

  5. BZOJ3609 [Heoi2014]人人尽说江南好 【博弈】

    题目链接 BZOJ3609 题解 我们假设最后合成若干个\(m\),和\(n \mod m\),此时合成次数是最多的,也唯一确定胜利者 可以发现,在轮流操作的情况下,胜利者一定可以将终态变为这个状态 ...

  6. BZOJ 3609: [Heoi2014]人人尽说江南好

    3609: [Heoi2014]人人尽说江南好 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 470  Solved: 336[Submit][Sta ...

  7. 【BZOJ3609】人人尽说江南好(博弈论)

    [BZOJ3609]人人尽说江南好(博弈论) 题面 BZOJ 洛谷 题解 昨天考试的时候,毒瘤出题人出了一个\(noip\)博弈十合一然后他就被阿鲁巴了,因为画面残忍,就不再展开. 这题是他的十合一中 ...

  8. [HEOI2014] 人人尽说江南好

    [HEOI2014] 人人尽说江南好 题目大意:一个博弈游戏,地上\(n\)堆石子,每堆石子有\(1\)个,每次可以合并任意两个石子堆\(a,b\),要求\(a + b \leq m\),问先手赢还是 ...

  9. 【bzoj3609】[Heoi2014]人人尽说江南好

    可以算出合并多少次. #include<algorithm> #include<iostream> #include<cstdlib> #include<cs ...

  10. P4101 [HEOI2014]人人尽说江南好

    题目描述 小 Z 是一个不折不扣的 ZRP(Zealot Round-game Player,回合制游戏狂热玩家),最近他 想起了小时候在江南玩过的一个游戏. 在过去,人们是要边玩游戏边填词的,比如这 ...

随机推荐

  1. python_31_集合

    # 集合是一个无序的,不重复的数据组合,它的主要作用如下: # 去重,把一个列表变成集合,就自动去重了 # 关系测试,测试两组数据之前的交集.差集.并集等关系 s = set([3, 5, 9, 10 ...

  2. javascrit中“字符串为什么可以调用成员”

    <script> var title = "this is title"; console.log(title.substr(0,5));   //字符串为什么可以调用 ...

  3. 重学css3(概览)

    css3新特性概览: 1.强大的选择器 2.半透明度效果的实现 3.多栏布局 4.多背景图 5.文字阴影 6.开放字体类型 7.圆角 8.边框图片 9.盒子阴影 10.媒体查询 浏览器内核又可以分成两 ...

  4. Angular2的笔记

    1.如果启动项目的时候出现下列黄色的警告说明电脑安装的全局cli和项目中使用的cli版本不一致,不过不影响使用,按它的提示执行 ng set --global warnings.versionMism ...

  5. list变set去重,set交集

    set 取交集 并集 删除没有的元素  不会报错 remove 会报错 https://www.cnblogs.com/alex3714/articles/5717620.html

  6. 从Mixin到hooks,谈谈对React16.7.0-alpha中即将引入的hooks的理解

      为了实现分离业务逻辑代码,实现组件内部相关业务逻辑的复用,在React的迭代中针对类组件中的代码复用依次发布了Mixin.HOC.Render props等几个方案.此外,针对函数组件,在Reac ...

  7. 17.VUE学习之- v-for指令的使用方法

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. django之模型层

    1. ORM MVC或者MTV框架中包括一个重要的部分,就是ORM,它实现了数据模型与数据库的解耦,即数据模型的设计不需要依赖于特定的数据库,通过简单的配置就可以轻松更换数据库,这极大的减轻了开发人员 ...

  9. 动态规划:ZOJ1074-最大和子矩阵 DP(最长子序列的升级版)

    To the Max Time Limit:1 Second     Memory Limit:32768 KB Problem Given a two-dimensional array of po ...

  10. [Hdu3652]B-number(数位DP)

    Description 题目大意:求小于n是13的倍数且含有'13'的数的个数. (1 <= n <= 1000000000) Solution 数位DP,题目需要包含13,且被13整除, ...