poj2356Find a multiple——鸽巢定理运用
题目:http://poj.org/problem?id=2356
N个数,利用鸽巢定理可知应有N+1个前缀和(包括0),因此其%N的余数一定有重复;
同余的两个前缀和之差一定为N的倍数,据此得出答案。
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,a[10005];
long long mod[10005],s;
int main()
{
scanf("%d",&n);
memset(mod,-1,sizeof mod);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
s+=a[i];
if(s%n==0)
{
printf("%d\n",i);
for(int j=1;j<=i;j++)
printf("%d\n",a[j]);
return 0;
}
if(mod[s%n]==-1)mod[s%n]=i;
else
{
printf("%d\n",i-mod[s%n]);
for(int j=mod[s%n]+1;j<=i;j++)
printf("%d\n",a[j]);
return 0;
}
}
printf("0");
return 0;
}
poj2356Find a multiple——鸽巢定理运用的更多相关文章
- HDU 5776 sum( 鸽巢定理简单题 )
链接:传送门 题意:给一个长为 n 的串,问是否有子串的和是 m 的倍数. 思路:典型鸽巢定理的应用,但是这里 n,m 的大小关系是不确定的,如果 n >= m 根据定理可以很简单的判定是一定有 ...
- [POJ2356] Find a multiple 鸽巢原理
Find a multiple Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8776 Accepted: 3791 ...
- [poj2356]--Find a multiple ——鸽巢原理
题意: 给定n个数,从中选取m个数,使得\(\sum | n\).本题使用Special Judge. 题解: 既然使用special judge,我们可以直接构造答案. 首先构造在mod N剩余系下 ...
- POJ 2356 Find a multiple( 鸽巢定理简单题 )
链接:传送门 题意:题意与3370类似 注意:注意输出就ok,输出的是集合的值不是集合下标 /***************************************************** ...
- codeforces 851C Five Dimensional Points(鸽巢原理)
http://codeforces.com/contest/851/problem/C 题意 - 给出 n 个五维空间的点 - 一个点a为 bad 的定义为 存在两点 b, c, 使的<ab, ...
- POJ 2356. Find a multiple 抽屉原理 / 鸽巢原理
Find a multiple Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7192 Accepted: 3138 ...
- poj 2356 Find a multiple(鸽巢原理)
Description The input contains N natural (i.e. positive integer) numbers ( N <= ). Each of that n ...
- POJ2356 Find a multiple 抽屉原理(鸽巢原理)
题意:给你N个数,从中取出任意个数的数 使得他们的和 是 N的倍数: 在鸽巢原理的介绍里面,有例题介绍:设a1,a2,a3,……am是正整数的序列,试证明至少存在正数k和l,1<=k<=l ...
- [POJ2356]Find a multiple 题解(鸽巢原理)
[POJ2356]Find a multiple Description -The input contains N natural (i.e. positive integer) numbers ( ...
随机推荐
- grunt使用一步一步讲解
grunt 是一套前端自动化工具,一个基于nodeJs的命令行工具,一般用于:① 压缩文件② 合并文件③ 简单语法检查 对于其他用法,我还不太清楚,我们这里简单介绍下grunt的压缩.合并文件,初学, ...
- 深入浅出Attribute(三)
约定: 1.”attribute”和”attributes”均不翻译 2.”property”译为“属性” 3.msdn中的原句不翻译 4.”program entity”译为”语言元素” Attri ...
- kernel&uboot学习笔记
uboot kernel uboot 1.Uboot编译流程分析: uboot是如何编译生成的? 2.根据include/configs/$(target).h可以生成include/autoconf ...
- Error -27728: Step download timeout (120 seconds)的解决方法(转)
LR中超时问题解决方法 超时错误在LoadRunner录制Web协议脚本回放时超时经常出现. 现象1:Action.c(16): Error -27728: Step download timeout ...
- poj 2151Check the difficulty of problems<概率DP>
链接:http://poj.org/problem?id=2151 题意:一场比赛有 T 支队伍,共 M 道题, 给出每支队伍能解出各题的概率~ 求 :冠军至少做出 N 题且每队至少做出一题的概率~ ...
- 淘宝(新浪)API获取IP地址位置信息
package com.parse; import java.io.BufferedReader; import java.io.DataOutputStream; import java.io.IO ...
- Hive 实际上对于所存储的文件的完整性以及数据内容是否和表结构一致无支配力
数据位于hdfs路径下 load data into Table t1 load 执行的是复制文件的操作 create Table partitioned by () 创建了分区目录
- 阿里云ecs docker使用(4)---mongo docker
1.新建一个Dockerfile文件 vim Dockerfile #VERSION 0.1.0 FROM ubuntu:14.04 #Install some RUN apt-get clean ...
- matlab 在机器视觉中常用的函数
~ triangulate() 三角化(获得距离)匹配点 ~ undistortImage() 去除相机畸变并生成图像
- Java for LeetCode 084 Largest Rectangle in Histogram【HARD】
For example, Given height = [2,1,5,6,2,3], return 10. 解题思路: 参考Problem H: Largest Rectangle in a Hist ...