Control

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2247    Accepted Submission(s): 940

Problem Description
 
 You, the head of Department of Security, recently received a top-secret
information that a group of terrorists is planning to transport some
WMD 1 from one city (the source) to another one (the
destination). You know their date, source and destination, and they are
using the highway network.
  The highway network consists of
bidirectional highways, connecting two distinct city. A vehicle can only
enter/exit the highway network at cities only.
  You may locate some
SA (special agents) in some selected cities, so that when the
terrorists enter a city under observation (that is, SA is in this city),
they would be caught immediately.
  It is possible to locate SA in
all cities, but since controlling a city with SA may cost your
department a certain amount of money, which might vary from city to
city, and your budget might not be able to bear the full cost of
controlling all cities, you must identify a set of cities, that:
  * all traffic of the terrorists must pass at least one city of the set.
  * sum of cost of controlling all cities in the set is minimal.
  You may assume that it is always possible to get from source of the terrorists to their destination.
------------------------------------------------------------
1 Weapon of Mass Destruction
 
Input
  There are several test cases.
 
 The first line of a single test case contains two integer N and M ( 2
<= N <= 200; 1 <= M <= 20000), the number of cities and the
number of highways. Cities are numbered from 1 to N.
  The second line contains two integer S,D ( 1 <= S,D <= N), the number of the source and the number of the destination.
 
 The following N lines contains costs. Of these lines the ith one
contains exactly one integer, the cost of locating SA in the ith city to
put it under observation. You may assume that the cost is positive and
not exceeding 107.
  The followingM lines tells you about
highway network. Each of these lines contains two integers A and B,
indicating a bidirectional highway between A and B.
  Please process until EOF (End Of File).
 
Output
  For each test case you should output exactly one line, containing one integer, the sum of cost of your selected set.
  See samples for detailed information.
 
Sample Input
5 6
5 3
5
2
3
4
12
1 5
5 4
2 3
2 4
4 3
2 1
 
Sample Output
3
 
Source
 
 
 

大致题意:
    给出一个又n个点,m条边组成的无向图。给出两个点s,t。对于图中的每个点,去掉这个点都需要一定的花费。求至少多少花费才能使得s和t之间不连通。

大致思路:
    最基础的拆点最大流,把每个点拆作两个点 i 和 i' 连接i->i'费用为去掉这个点的花费,如果原图中有一条边a->b则连接a'->b。对这个图求出最大流即可。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue> using namespace std; const int VM=;
const int EM=;
const int INF=0x3f3f3f3f; struct Edge{
int to,nxt;
int cap;
}edge[EM]; int n,m,src,des,cnt,head[VM];
int dep[VM]; void addedge(int cu,int cv,int cw){
edge[cnt].to=cv; edge[cnt].cap=cw; edge[cnt].nxt=head[cu];
head[cu]=cnt++;
edge[cnt].to=cu; edge[cnt].cap=; edge[cnt].nxt=head[cv];
head[cv]=cnt++;
} int BFS(){
queue<int> q;
while(!q.empty())
q.pop();
memset(dep,-,sizeof(dep));
dep[src]=;
q.push(src);
while(!q.empty()){
int u=q.front();
q.pop();
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(edge[i].cap> && dep[v]==-){
dep[v]=dep[u]+;
q.push(v);
}
}
}
return dep[des]!=-;
} int DFS(int u,int minx){
if(u==des)
return minx;
int tmp;
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(edge[i].cap> && dep[v]==dep[u]+ && (tmp=DFS(v,min(minx,edge[i].cap)))){
edge[i].cap-=tmp;
edge[i^].cap+=tmp;
return tmp;
}
}
dep[u]=-;
return ;
} int Dinic(){
int ans=,tmp;
while(BFS()){
while(){
tmp=DFS(src,INF);
if(tmp==)
break;
ans+=tmp;
}
}
return ans;
} int main(){
int s,t;
while(~scanf("%d%d",&n,&m)){
cnt=;
memset(head,-,sizeof(head));
scanf("%d%d",&s,&t);
src=, des=*n+;
addedge(src,s,INF);
addedge(n+t,des,INF);
int u,v,w;
for(int i=;i<=n;i++){
scanf("%d",&w);
addedge(i,n+i,w);
addedge(n+i,i,w);
}
for(int i=;i<=m;i++){
scanf("%d%d",&u,&v);
addedge(n+u,v,INF); //注意这里的建边,src--->s--->u(某条边)---->n+u(拆分u点后的另一点)---->v---->n+v(拆分v点后的另一点)---->u-----
addedge(n+v,u,INF); //所以,addedge(n+u,v,INF);仔细想想,这样才能保证 u 和 v 使连接着的
}
printf("%d\n",Dinic());
}
return ;
}

hdu 4289 网络流拆点,类似最小割(可做模板)邻接矩阵实现的更多相关文章

  1. HDU 5889 Barricade(最短路+最小割水题)

    Barricade Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total ...

  2. HDU - 3035 War(对偶图求最小割+最短路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3035 题意 给个图,求把s和t分开的最小割. 分析 实际顶点和边非常多,不能用最大流来求解.这道题要用 ...

  3. HDU - 3002 King of Destruction(最小割)

    http://acm.hdu.edu.cn/showproblem.php?pid=3002   最小割模板 #include<iostream> #include<cmath> ...

  4. HDU 5889 Barricade(最短路+最小割)

    http://acm.hdu.edu.cn/showproblem.php?pid=5889 题意: 给出一个图,帝国将军位于1处,敌军位于n处,敌军会选择最短路到达1点.现在帝国将军要在路径上放置障 ...

  5. HDU 3691 Nubulsa Expo(全局最小割Stoer-Wagner算法)

    Problem Description You may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa ...

  6. 【网络流#8】POJ 3469 Dual Core CPU 最小割【ISAP模板】 - 《挑战程序设计竞赛》例题

    [题意]有n个程序,分别在两个内核中运行,程序i在内核A上运行代价为ai,在内核B上运行的代价为bi,现在有程序间数据交换,如果两个程序在同一核上运行,则不产生额外代价,在不同核上运行则产生Cij的额 ...

  7. HDU 1569 方格取数(2) (最小割)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  8. 【HDU 6126】Give out candies 最小割

    题意 有$n​$个小朋友,给每个人分$1~m​$个糖果,有k个限制 限制形如$(x,y,z)​$ 表示第$x​$个人分到的糖数减去第$y​$个人分到的糖数不大于$z​$,给第$i​$个人$j​$颗糖获 ...

  9. hdu 6214 Smallest Minimum Cut(最小割的最少边数)

    题目大意是给一张网络,网络可能存在不同边集的最小割,求出拥有最少边集的最小割,最少的边是多少条? 思路:题目很好理解,就是找一个边集最少的最小割,一个方法是在建图的时候把边的容量处理成C *(E+1 ...

随机推荐

  1. Django Form 表单

    Form 表单功能 生成HTML表单元素检查表单元素的合法性验证如果错误,重复显示表单数据类型转换 Form相关的对象 Widget 渲染成HTML元素的工具Field Form对象中的一个字段For ...

  2. gearmand 编译 Unable to find libevent

    如果出现configure: error: Unable to find libevent,则输入命令:yum -y install libevent libevent-devel然后重新config ...

  3. Hive 之元数据库的三种模式

    Hive 介绍 http://www.cnblogs.com/sharpxiajun/archive/2013/06/02/3114180.html Hive的数据类型和数据模型 http://www ...

  4. solr数据分片相关

    solr操作url 使用正常的core,使用命令生成coillection solr create_collection -c students2 -d ../server/solr/my/conf ...

  5. java调用摄像头

    http://blog.csdn.net/xing_sky/article/details/43482213 原文地址:http://blog.csdn.net/zajin/article/detai ...

  6. 如何在Git提交空文件夹

    1,git clone url 拉取代码至本地 2,mkdir 文件夹名称 在本地创建文件夹 3,cd 文件夹名称 git init 初始化文件夹 vi .gitkeep 创建.gitkeep文件,内 ...

  7. java定义一个Circle类,包含一个double型的radius属性代表圆的半径,一个findArea()方法返回圆的面积

    需求如下:(1)定义一个Circle类,包含一个double型的radius属性代表圆的半径,一个findArea()方法返回圆的面积. (2)定义一个类PassObject,在类中定义一个方法pri ...

  8. SQLSERVER存储过程的基本语法实例

    SQLSERVER存储过程的基本语法实例 SQLSERVER存储过程的基本语法实例 一.定义变量--简单赋值 declare @a intset @a=5 print @a --使用select语句赋 ...

  9. LIS最长上升子序列模板

    LIS n2解法: #include<iostream> #include<cstdio> using namespace std; int n,ans; ],f[]; int ...

  10. js函数带括号和不带括号赋给对象属性的区别

    注意: 1.js为对象添加函数时,不要在函数后面加().一旦加了括号是表示将函数的返回值赋给对象的属性. 例:function test(){ document.writeln("我是js函 ...