Control

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2247    Accepted Submission(s): 940

Problem Description
 
 You, the head of Department of Security, recently received a top-secret
information that a group of terrorists is planning to transport some
WMD 1 from one city (the source) to another one (the
destination). You know their date, source and destination, and they are
using the highway network.
  The highway network consists of
bidirectional highways, connecting two distinct city. A vehicle can only
enter/exit the highway network at cities only.
  You may locate some
SA (special agents) in some selected cities, so that when the
terrorists enter a city under observation (that is, SA is in this city),
they would be caught immediately.
  It is possible to locate SA in
all cities, but since controlling a city with SA may cost your
department a certain amount of money, which might vary from city to
city, and your budget might not be able to bear the full cost of
controlling all cities, you must identify a set of cities, that:
  * all traffic of the terrorists must pass at least one city of the set.
  * sum of cost of controlling all cities in the set is minimal.
  You may assume that it is always possible to get from source of the terrorists to their destination.
------------------------------------------------------------
1 Weapon of Mass Destruction
 
Input
  There are several test cases.
 
 The first line of a single test case contains two integer N and M ( 2
<= N <= 200; 1 <= M <= 20000), the number of cities and the
number of highways. Cities are numbered from 1 to N.
  The second line contains two integer S,D ( 1 <= S,D <= N), the number of the source and the number of the destination.
 
 The following N lines contains costs. Of these lines the ith one
contains exactly one integer, the cost of locating SA in the ith city to
put it under observation. You may assume that the cost is positive and
not exceeding 107.
  The followingM lines tells you about
highway network. Each of these lines contains two integers A and B,
indicating a bidirectional highway between A and B.
  Please process until EOF (End Of File).
 
Output
  For each test case you should output exactly one line, containing one integer, the sum of cost of your selected set.
  See samples for detailed information.
 
Sample Input
5 6
5 3
5
2
3
4
12
1 5
5 4
2 3
2 4
4 3
2 1
 
Sample Output
3
 
Source
 
 
 

大致题意:
    给出一个又n个点,m条边组成的无向图。给出两个点s,t。对于图中的每个点,去掉这个点都需要一定的花费。求至少多少花费才能使得s和t之间不连通。

大致思路:
    最基础的拆点最大流,把每个点拆作两个点 i 和 i' 连接i->i'费用为去掉这个点的花费,如果原图中有一条边a->b则连接a'->b。对这个图求出最大流即可。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue> using namespace std; const int VM=;
const int EM=;
const int INF=0x3f3f3f3f; struct Edge{
int to,nxt;
int cap;
}edge[EM]; int n,m,src,des,cnt,head[VM];
int dep[VM]; void addedge(int cu,int cv,int cw){
edge[cnt].to=cv; edge[cnt].cap=cw; edge[cnt].nxt=head[cu];
head[cu]=cnt++;
edge[cnt].to=cu; edge[cnt].cap=; edge[cnt].nxt=head[cv];
head[cv]=cnt++;
} int BFS(){
queue<int> q;
while(!q.empty())
q.pop();
memset(dep,-,sizeof(dep));
dep[src]=;
q.push(src);
while(!q.empty()){
int u=q.front();
q.pop();
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(edge[i].cap> && dep[v]==-){
dep[v]=dep[u]+;
q.push(v);
}
}
}
return dep[des]!=-;
} int DFS(int u,int minx){
if(u==des)
return minx;
int tmp;
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].to;
if(edge[i].cap> && dep[v]==dep[u]+ && (tmp=DFS(v,min(minx,edge[i].cap)))){
edge[i].cap-=tmp;
edge[i^].cap+=tmp;
return tmp;
}
}
dep[u]=-;
return ;
} int Dinic(){
int ans=,tmp;
while(BFS()){
while(){
tmp=DFS(src,INF);
if(tmp==)
break;
ans+=tmp;
}
}
return ans;
} int main(){
int s,t;
while(~scanf("%d%d",&n,&m)){
cnt=;
memset(head,-,sizeof(head));
scanf("%d%d",&s,&t);
src=, des=*n+;
addedge(src,s,INF);
addedge(n+t,des,INF);
int u,v,w;
for(int i=;i<=n;i++){
scanf("%d",&w);
addedge(i,n+i,w);
addedge(n+i,i,w);
}
for(int i=;i<=m;i++){
scanf("%d%d",&u,&v);
addedge(n+u,v,INF); //注意这里的建边,src--->s--->u(某条边)---->n+u(拆分u点后的另一点)---->v---->n+v(拆分v点后的另一点)---->u-----
addedge(n+v,u,INF); //所以,addedge(n+u,v,INF);仔细想想,这样才能保证 u 和 v 使连接着的
}
printf("%d\n",Dinic());
}
return ;
}

hdu 4289 网络流拆点,类似最小割(可做模板)邻接矩阵实现的更多相关文章

  1. HDU 5889 Barricade(最短路+最小割水题)

    Barricade Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total ...

  2. HDU - 3035 War(对偶图求最小割+最短路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3035 题意 给个图,求把s和t分开的最小割. 分析 实际顶点和边非常多,不能用最大流来求解.这道题要用 ...

  3. HDU - 3002 King of Destruction(最小割)

    http://acm.hdu.edu.cn/showproblem.php?pid=3002   最小割模板 #include<iostream> #include<cmath> ...

  4. HDU 5889 Barricade(最短路+最小割)

    http://acm.hdu.edu.cn/showproblem.php?pid=5889 题意: 给出一个图,帝国将军位于1处,敌军位于n处,敌军会选择最短路到达1点.现在帝国将军要在路径上放置障 ...

  5. HDU 3691 Nubulsa Expo(全局最小割Stoer-Wagner算法)

    Problem Description You may not hear about Nubulsa, an island country on the Pacific Ocean. Nubulsa ...

  6. 【网络流#8】POJ 3469 Dual Core CPU 最小割【ISAP模板】 - 《挑战程序设计竞赛》例题

    [题意]有n个程序,分别在两个内核中运行,程序i在内核A上运行代价为ai,在内核B上运行的代价为bi,现在有程序间数据交换,如果两个程序在同一核上运行,则不产生额外代价,在不同核上运行则产生Cij的额 ...

  7. HDU 1569 方格取数(2) (最小割)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  8. 【HDU 6126】Give out candies 最小割

    题意 有$n​$个小朋友,给每个人分$1~m​$个糖果,有k个限制 限制形如$(x,y,z)​$ 表示第$x​$个人分到的糖数减去第$y​$个人分到的糖数不大于$z​$,给第$i​$个人$j​$颗糖获 ...

  9. hdu 6214 Smallest Minimum Cut(最小割的最少边数)

    题目大意是给一张网络,网络可能存在不同边集的最小割,求出拥有最少边集的最小割,最少的边是多少条? 思路:题目很好理解,就是找一个边集最少的最小割,一个方法是在建图的时候把边的容量处理成C *(E+1 ...

随机推荐

  1. POI对EXCEL的操作【重点:如何设置CELL格式为文本格式】

    实际开发过程中通常用到的就是从数据库导出EXCEL表格了,JXL可以这样做,其实POI也可以(关于JXL与POI的异同可访问我之前总结的文章),之前写过POI对七种文档(当然也包括EXCEL)的内容读 ...

  2. Web前端学习流程

  3. solr dataimport

    solrconfig.xml <requestHandler name="/dataimport" class="org.apache.solr.handler.d ...

  4. arcgis engine计算点到线的最短距离

    IProximityOperator接口用于获取两个几何图形的距离,以及给定一个Point,求另一个几何图形上离离给定点最近的点.IProximityOperator接口的主要方法有:QueryNea ...

  5. 快速下载jar包

    1, http://www.mvnrepository.com 2,可以从spring官网上下载,如果是mvn的话可以通过上面的网址下载

  6. 洛谷P1111修复公路并查集改

    看了他们的题解感觉很震惊,为什么要用kruskal,这题要用到最小生成树吗??? 38行短短的程序就可以了,我觉得学习不是一种套用,套自己学的,而且题解很大一部分都是kruskal. 个人认为自己的程 ...

  7. 重载&重写

    重载:同一个类中,方法名相同,方法参数不同(参数个数.参数类型),返回类型无关,所以返回类型不能作为重载的区别依据. 重写:子父类中,子类的方法名.参数位置.参数个数.返回类型和父类一致,方法体不同 ...

  8. dynamic routing between captual

    对于人脑 决策树形式 对于CNN 层级与层级间的传递 人在识别物体的时候会进行坐标框架的设置 CNN无法识别,只能通过大量训练 胶囊 :一个神经元集合,有一个活动的向量,来表示物体的各类信息,向量的长 ...

  9. django+xadmin在线教育平台(五)

    3-3 django orm介绍与model设计 上节教程完成后代码(来学习本节前置条件): 对应commit: 留言板前端页面展示.本次内容截止教程3-2结束. 可能现在你还在通过手写sql语句来操 ...

  10. 三十三、MySQL 导入数据

    MySQL 导入数据 本章节我们为大家介绍几种简单的 MySQL 导出的数据的命令. 1.mysql 命令导入 使用 mysql 命令导入语法格式为: mysql -u用户名 -p密码 < 要导 ...