Rooted Trees

Descriptions:

A graph G = (VE) is a data structure where V is a finite set of vertices and E is a binary relation on V represented by a set of edges. Fig. 1 illustrates an example of a graph (or graphs).

 
Fig. 1

A free tree is a connnected, acyclic, undirected graph. A rooted tree is a free tree in which one of the vertices is distinguished from the others. A vertex of a rooted tree is called "node."

Your task is to write a program which reports the following information for each node u of a given rooted tree T:

  • node ID of u
  • parent of u
  • depth of u
  • node type (root, internal node or leaf)
  • a list of chidlren of u

If the last edge on the path from the root r of a tree T to a node x is (px), then p is the parent of x, and x is a child of p. The root is the only node in T with no parent.

A node with no children is an external node or leaf. A nonleaf node is an internal node

The number of children of a node x in a rooted tree T is called the degree of x.

The length of the path from the root r to a node x is the depth of x in T.

Here, the given tree consists of n nodes and evey node has a unique ID from 0 to n-1.

Fig. 2 shows an example of rooted trees where ID of each node is indicated by a number in a circle (node). The example corresponds to the first sample input.

 
Fig. 2

Input

The first line of the input includes an integer n, the number of nodes of the tree.

In the next n lines, the information of each node u is given in the following format:

id k c1 c2 ... ck

where id is the node ID of uk is the degree of uc1 ... ck are node IDs of 1st, ... kth child of u. If the node does not have a child, the k is 0.

Output

Print the information of each node in the following format ordered by IDs:

node id: parent = p , depth = dtype, [c1...ck]

p is ID of its parent. If the node does not have a parent, print -1.

d is depth of the node.

type is a type of nodes represented by a string (root, internal node or leaf). If the root can be considered as a leaf or an internal node, print root.

c1...ck is the list of children as a ordered tree.

Please follow the format presented in a sample output below.

Constraints

  • 1 ≤ n ≤ 100000

Sample Input 1

13
0 3 1 4 10
1 2 2 3
2 0
3 0
4 3 5 6 7
5 0
6 0
7 2 8 9
8 0
9 0
10 2 11 12
11 0
12 0

Sample Output 1

node 0: parent = -1, depth = 0, root, [1, 4, 10]
node 1: parent = 0, depth = 1, internal node, [2, 3]
node 2: parent = 1, depth = 2, leaf, []
node 3: parent = 1, depth = 2, leaf, []
node 4: parent = 0, depth = 1, internal node, [5, 6, 7]
node 5: parent = 4, depth = 2, leaf, []
node 6: parent = 4, depth = 2, leaf, []
node 7: parent = 4, depth = 2, internal node, [8, 9]
node 8: parent = 7, depth = 3, leaf, []
node 9: parent = 7, depth = 3, leaf, []
node 10: parent = 0, depth = 1, internal node, [11, 12]
node 11: parent = 10, depth = 2, leaf, []
node 12: parent = 10, depth = 2, leaf, []

Sample Input 2

4
1 3 3 2 0
0 0
3 0
2 0

Sample Output 2

node 0: parent = 1, depth = 1, leaf, []
node 1: parent = -1, depth = 0, root, [3, 2, 0]
node 2: parent = 1, depth = 1, leaf, []
node 3: parent = 1, depth = 1, leaf, []

Note

You can use a left-child, right-sibling representation to implement a tree which has the following data:

  • the parent of u
  • the leftmost child of u
  • the immediate right sibling of u

Reference

Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. The MIT Press.

题目链接:

https://vjudge.net/problem/Aizu-ALDS1_7_A

题目大意:给你一个有根树的各个信息,输出它的父亲,深度,是什么性质的节点,子节点列表

输入0 - N-1节点的度和子节点(无序), 要求按照节点序号输出节点的相关信息
node id: parent = p , depth = d, type, [c1…ck]

具体做法都在代码上

AC代码

#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#define mod 1000000007
#define eps 1e-6
#define ll long long
#define INF 0x3f3f3f3f
#define ME0(x) memset(x,0,sizeof(x))
using namespace std;
struct node
{
int parent;
int left,right;//左子右兄弟表示法,l代表节点u的最左侧的子结点,r为u的右侧紧邻的兄弟节点
};
node a[];
int D[];
void getDepth(int u,int p)//递归求结点的深度
{
D[u]=p;
if(a[u].right!=-)//当前结点存在右侧兄弟节点,不改变深度
getDepth(a[u].right,p);
if(a[u].left!=-)//存在最左侧子结点,深度+1
getDepth(a[u].left,p+);
}
void print(int u)
{
cout<<"node "<<u<<": parent = "<<a[u].parent<<", depth = "<<D[u]<<", ";
if(a[u].parent==-)//不存在父结点,即为根节点
cout<<"root, [";
else if(a[u].left==-)//没有子结点,即为叶
cout<<"leaf, [";
else
cout<<"internal node, [";
for(int i=,c=a[u].left; c!=-; ++i,c=a[c].right)
{
if(i)
cout<<", ";
cout<<c;//节点u的子结点列表从u的左侧子结点开始按顺序输出,直到当前子结点不存在右侧兄弟节点为止
}
cout<<"]"<<endl; }
int main()
{
int n;
cin>>n;
for(int i=; i<n; ++i)//初始化
a[i].left=a[i].parent=a[i].right=-;
for(int i=; i<n; ++i)
{
int id,k;
cin>>id>>k;
for(int j=; j<k; ++j)
{
int c,l;
cin>>c;
if(j)
a[l].right=c;
else
a[id].left=c;
l=c;
a[c].parent=id;
}
}
int root;//根节点的编号
for(int i=; i<n; ++i)
if(a[i].parent==-)
root=i;
getDepth(root,);
for(int i=; i<n; ++i)
print(i);
}

【Aizu - ALDS1_7_A】Rooted Trees(树的表达)的更多相关文章

  1. 有根树的表达 Aizu - ALDS1_7_A: Rooted Trees

    有根树的表达 题目:Rooted Trees Aizu - ALDS1_7_A  A graph G = (V, E) is a data structure where V is a finite ...

  2. HDU p1294 Rooted Trees Problem 解题报告

    http://www.cnblogs.com/keam37/p/3639294.html keam所有 转载请注明出处 Problem Description Give you two definit ...

  3. Tree - Rooted Trees

    Rooted Trees A graph G = (V, E) is a data structure where V is a finite set of vertices and E is a b ...

  4. 10.3 Implementing pointers and objects and 10.4 Representing rooted trees

    Algorithms 10.3 Implementing pointers and  objects  and 10.4 Representing rooted trees Allocating an ...

  5. TZOJ 4292 Count the Trees(树hash)

    描述 A binary tree is a tree data structure in which each node has at most two child nodes, usually di ...

  6. HDU 1294 Rooted Trees Problem

    题目大意:求有n个节点的树有几种? 题解:http://www.cnblogs.com/keam37/p/3639294.html #include <iostream> typedef ...

  7. Disharmony Trees 树状数组

    Disharmony Trees Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Su ...

  8. HDU 5111 Alexandra and Two Trees 树链剖分 + 主席树

    题意: 给出两棵树,每棵树的节点都有一个权值. 同一棵树上的节点的权值互不相同,不同树上节点的权值可以相同. 要求回答如下询问: \(u_1 \, v_1 \, u_2 \, v_2\):询问第一棵树 ...

  9. HDU1294 Rooted Trees Problem(整数划分 组合数学 DP)

    讲解见http://www.cnblogs.com/IMGavin/p/5621370.html, 4 可重组合 dfs枚举子树的节点个数,相乘再累加  1 #include<iostream& ...

随机推荐

  1. 【BZOJ1483】[HNOI2009]梦幻布丁 链表+启发式合并

    [BZOJ1483][HNOI2009]梦幻布丁 Description N个布丁摆成一行,进行M次操作.每次将某个颜色的布丁全部变成另一种颜色的,然后再询问当前一共有多少段颜色.例如颜色分别为1,2 ...

  2. win10获取注册表权限

    1.cmd中输入regedit打开注册表 2.在需要的注册表项中右键选择“权限”

  3. 电脑插入U盘后显示CD驱动器,如何还原为正常U盘?

    以前用电脑店制作U盘启动工具,结果U盘的一小部分变成了CD驱动器, 无论怎么格式化都无法将U盘还原,这几天心血来潮,看了一些恢复U盘的教程, 打算写一篇博客讲解一下还原过程(本人亲测) 1.下载Chi ...

  4. 【NOIP 模拟赛】 道路

    题目描述在二维坐标平面里有 N 个整数点,信息班某一巨佬要访问这 N 个点.刚开始巨佬在点(0,0)处. 每一步,巨佬可以走到上.下.左.右四个点.即假设巨佬当前所在点的坐标是(x,y),那么它下一步 ...

  5. Linux环境编程之同步(三):读写锁

    概述 相互排斥锁把试图进入我们称之为临界区的全部其它线程都堵塞住.该临界区通常涉及对由这些线程共享一个或多个数据的訪问或更新.读写锁在获取读写锁用于读某个数据和获取读写锁用于写直接作差别. 读写锁的分 ...

  6. CentOS-7-64bit 下为firefox安装flashplayer

    最近更新了Centos 7 还是有一些不习惯的 给ff安flashplayer插件时,按centos 6.x的方法时都无法成功,后来find了一下,才知道firefox还有一个64bit的文件夹: 解 ...

  7. linux 启动引导器 grub,单用户模式:

    Linux启动引导器 安装linux操作系统的时候就已经将启动引导器安装到硬盘上去了,才能通过硬盘的读取方式启动操作系统. 引导器分为2种: Lilo:功能比较简单,使用比较麻烦,后续发行版中使用gr ...

  8. git多人协作冲突解决方法

    http://www.trinea.cn/dev-tools/git-skill/ http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361 ...

  9. 《数学之美》第15章 矩阵计算和文本处理中两个分类问题——SVD分解的应用

    转载请注明原地址:http://www.cnblogs.com/connorzx/p/4170047.html 提出原因 基于余弦定理对文本和词汇的处理需要迭代的次数太多(具体见14章笔记),为了找到 ...

  10. ansible操作模块相关

    1. 查看模块可用参数命令 ansible-doc -s module_name