1. advantage: when number of features is too large, so previous algorithm is not a good way to learn complex nonlinear hypotheses.

2. representation

"activation" of unit i in layer j

matrix of weights controlling function mapping from layer j to layer j+1

3. sample

we have the neural expressions

if network has sj units in layer j, sj+1 units in layer j+1, then θ(j) will be of dimension sj+1 * (s+ 1).

4. forward propagation:

add 

5. cost function

L: total no. of layers in network

s_l: no. of units(not counting bias unit) in layer l

6. gradient computation

need code to compute:

backpropagation algorithm:

sample network:

Pace:

7. gradient checking

8. random initialization

9. sum.

Machine Learning No.5: Neural networks的更多相关文章

  1. [Machine Learning]学习笔记-Neural Networks

    引子 对于一个特征数比较大的非线性分类问题,如果采用先前的回归算法,需要很多相关量和高阶量作为输入,算法的时间复杂度就会很大,还有可能会产生过拟合问题,如下图: 这时就可以选择采用神经网络算法. 神经 ...

  2. (转)Understanding, generalisation, and transfer learning in deep neural networks

    Understanding, generalisation, and transfer learning in deep neural networks FEBRUARY 27, 2017   Thi ...

  3. [译]深度神经网络的多任务学习概览(An Overview of Multi-task Learning in Deep Neural Networks)

    译自:http://sebastianruder.com/multi-task/ 1. 前言 在机器学习中,我们通常关心优化某一特定指标,不管这个指标是一个标准值,还是企业KPI.为了达到这个目标,我 ...

  4. DAG-GNN: DAG Structure Learning with Graph Neural Networks

    目录 概 主要内容 代码 Yu Y., Chen J., Gao T. and Yu M. DAG-GNN: DAG structure learning with graph neural netw ...

  5. 论文笔记之:Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

    Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理 ...

  6. [CVPR2015] Is object localization for free? – Weakly-supervised learning with convolutional neural networks论文笔记

    p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p. ...

  7. Machine Learning, Homework 9, Neural Nets

    Machine Learning, Homework 9, Neural NetsApril 15, 2019ContentsBoston Housing with a Single Layer an ...

  8. This instability is a fundamental problem for gradient-based learning in deep neural networks. vanishing exploding gradient problem

    The unstable gradient problem: The fundamental problem here isn't so much the vanishing gradient pro ...

  9. 【论文阅读】Learning Dual Convolutional Neural Networks for Low-Level Vision

    论文阅读([CVPR2018]Jinshan Pan - Learning Dual Convolutional Neural Networks for Low-Level Vision) 本文针对低 ...

随机推荐

  1. xshell登录到CentOS7上时出现“The remote SSH server rejected X11 forwarding request.

    其原因是肯能对openssh版本进行了升级. 解决方法为:         yum install xorg-x11-font* xorg-x11-xauth        /etc/ssh/sshd ...

  2. dedecms图片列表效果调用

    效果如图 代码如下: <div class="listbox"> <ul class="e1"> {dede:list pagesize ...

  3. 2016.10.19 intelliJ的基本操作

    参考大部分来自:IntelliJ IDEA 13试用手记(附详细截图) 用eclipse实在用的有点心累了.所以准备转战intelliJ.   一.下载安装 官网地址:http://www.jetbr ...

  4. Ethernet帧格式

    一.Ethernet帧格式的发展 1980 DEC,Intel,Xerox制订了Ethernet I的标准 1982 DEC,Intel,Xerox又制订了Ehternet II的标准 1982 IE ...

  5. Java数组去掉反复的方法集

    经经常使用到,有时候不仅仅是简单的基本类型,那种能够用set集合去重,好多时间用到的是我们自己定义的类型,以下举个样例(我这儿就那int举例了): 方法一. 这样的类似与选择排序算法,首先我们取i值, ...

  6. ZF-net

    ZF-net 摘要: 1.这篇文章的motivation 是 :CNN性能良好,可是我们不知道它为何性能良好.也不知道它怎么能够被提高? 2.本文介绍了一种新方法实现中间层和分类器的可视化 3.採用消 ...

  7. 多媒体层预览(Media Layer OverView)

    音频模块位于多媒体层里.多媒体层包含了图形.音频.视频三种技术.这三种技术会给你带来声觉.视觉上的良好体验. 来看看ios的结构体系以及媒体层上的内容:                         ...

  8. bzoj4010【HNOI2015】菜肴制作

    4010: [HNOI2015]菜肴制作 Time Limit: 5 Sec  Memory Limit: 512 MB Submit: 981  Solved: 480 [Submit][Statu ...

  9. NoSQL数据库的分类

  10. H5缓存机制学习记录

    参考文章:http://mp.weixin.qq.com/s?__biz=MTEwNTM0ODI0MQ==&mid=404724239&idx=1&sn=e0a2887f9ff ...