from NOIP2016模拟题34

Description

给定一个长度\(n\le 10^6\)的序列, 给定\(A, B\)

给出一个序列,要求你通过如下两个操作使得序列中所有数的最大公约数大于1,每个操作最多使用一次

1:删除一段连续的数,代价为删除的长度$*A $

2:将任意多个数+1或-1,代价为 \(B *\)数的个数

Analysis

由于删除也至少留下一个数

最后的gcd一定是a[1]-1,a[1],a[1]+1,a[n]-1,a[n],a[n]+1六个数中

某个数的质因数的倍数

Solution

考虑每个可能的质因数:

two_pointer搞出删除的区间

其他用修改操作

预处理出哪些数必须修改chg[i]

哪些数必须删除must[i]

若对当前two_pointer区间

修改要修改的数优于区间删除

就将左区间右移一下

two_pointer移的时候要保证合法

Code

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long LL;
const int M=1000007; inline int rd(){
int x=0;bool f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=0;
for(;isdigit(c);c=getchar()) x=x*10+c-48;
return f?x:-x;
}
int n;
int a[M];
int fac[M*12],cnt=0;
LL A,B;
LL chg[M];
LL must[M];
LL ans=9223372036854775807; void solve(int p){
int i,l,r;
for(i=1;i<=n;i++){
chg[i]=must[i]=0;
if (a[i] % p == 0) continue;
if((a[i]+1)%p==0||(a[i]-1)%p==0) chg[i]=1;
else if(a[i]%p) must[i]=1;
}
for(i=1;i<=n;i++) chg[i]+=chg[i-1];
for(i=1;i<=n;i++) must[i]+=must[i-1]; for(l=1,r=1;r<=n;r++){//two_pointer求删除区间
if(must[n]-must[r]) continue;//不合法
if(l==1&&r==n) l=2;//不能全删
while(l<=r&&must[l]==0&&(chg[r]-chg[l-1])*B<=(r-l+1)*A) l++;//更优且移动和合法
ans=min(ans,(chg[l-1]+chg[n]-chg[r])*B+(r-l+1)*A);
}
} void split(int x){
for(int i=2;i*i<=x;i++){
if(x%i==0) fac[++cnt]=i;
while(x%i==0) x/=i;
}
if(x>2) fac[++cnt]=x;
} int main(){
int i;
n=rd(),A=rd(),B=rd();
for(i=1;i<=n;i++) a[i]=rd();
split(a[1]); split(a[1]-1); split(a[1]+1);
split(a[n]); split(a[n]-1); split(a[n]+1);
sort(fac+1,fac+cnt+1);
cnt=unique(fac+1,fac+cnt+1)-(fac+1);
for(i=1;i<=cnt;i++)
solve(fac[i]);
printf("%lld\n",ans);
return 0;
}

xsy 1845 - GCD的更多相关文章

  1. POJ 1845 (约数和+二分等比数列求和)

    题目链接: http://poj.org/problem?id=1845 题目大意:A^B的所有约数和,mod 9901. 解题思路: ①整数唯一分解定理: 一个整数A一定能被分成:A=(P1^K1) ...

  2. Objective-C三种定时器CADisplayLink / NSTimer / GCD的使用

    OC中的三种定时器:CADisplayLink.NSTimer.GCD 我们先来看看CADiskplayLink, 点进头文件里面看看, 用注释来说明下 @interface CADisplayLin ...

  3. iOS 多线程之GCD的使用

    在iOS开发中,遇到耗时操作,我们经常用到多线程技术.Grand Central Dispatch (GCD)是Apple开发的一个多核编程的解决方法,只需定义想要执行的任务,然后添加到适当的调度队列 ...

  4. 【swift】BlockOperation和GCD实用代码块

    //BlockOperation // // ViewController.swift import UIKit class ViewController: UIViewController { @I ...

  5. 修改版: 小伙,多线程(GCD)看我就够了,骗你没好处!

    多线程(英语:multithreading),是指从软件或者硬件上实现多个线程并发执行的技术.具有多线程能力的计算机因有硬件支持而能够在同一时间执行多于一个线程,进而提升整体处理性能.具有这种能力的系 ...

  6. GCD的相关函数使用

    GCD 是iOS多线程实现方案之一,非常常用 英文翻译过来就是伟大的中枢调度器,也有人戏称为是牛逼的中枢调度器 是苹果公司为多核的并行运算提出的解决方案 1.一次性函数 dispatch_once 顾 ...

  7. hdu1695 GCD(莫比乌斯反演)

    题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...

  8. hdu2588 GCD (欧拉函数)

    GCD 题意:输入N,M(2<=N<=1000000000, 1<=M<=N), 设1<=X<=N,求使gcd(X,N)>=M的X的个数.  (文末有题) 知 ...

  9. BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

    2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discu ...

随机推荐

  1. React脚手架less的安装

    最近在用react.js 结合蚂蚁金服的 Ant Design Mobile 做一个单页面的应用程序,遇到了一个很棘手的问题——那就是 react脚手架不支持less,看了不少优秀博主如何在react ...

  2. Python 生成器和协程

    Python3 迭代器与生成器 迭代器 迭代是Python最强大的功能之一,是访问集合元素的一种方式. 迭代器是一个可以记住遍历的位置的对象. 迭代器对象从集合的第一个元素开始访问,直到所有的元素被访 ...

  3. 【laravel】【转发】laravel 导入导出excel文档

    1.简介 Laravel Excel 在 Laravel 5 中集成 PHPOffice 套件中的 PHPExcel ,从而方便我们以优雅的.富有表现力的代码实现Excel/CSV文件的导入和 导出  ...

  4. GOPATH和GOROOT

    安装指定版本golang apt-get purge golang* //删除之前安装的文件 add-apt-repository ppa:evarlast/golang-1.8 apt-get up ...

  5. [译]The Python Tutorial#4. More Control Flow Tools

    [译]The Python Tutorial#More Control Flow Tools 除了刚才介绍的while语句之外,Python也从其他语言借鉴了其他流程控制语句,并做了相应改变. 4.1 ...

  6. 【python学习】新手基础程序练习(一)

    首先得先编一下程序员必须编的程序——Hello World……(这应该是程序员情结...) #coding=utf-8 #Version:python3.7.0 #Tools:Pycharm 2017 ...

  7. PHP GD库---之微信朋友圈9张图

    $item_pic = "img/item.jpg"; list($width, $height) = getimagesize($item_pic); $item_pic = i ...

  8. linux+ARM学习路线

    学习步骤如下: 1.Linux 基础 安装Linux操作系统 Linux文件系统 Linux常用命令 Linux启动过程详解 熟悉Linux服务能够独立安装Linux操作系统 能够熟练使用Linux系 ...

  9. 3224: Tyvj 1728 普通平衡树(新板子)

    3224: Tyvj 1728 普通平衡树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 17048  Solved: 7429[Submit][St ...

  10. SPOJ QTREE6 Query on a tree VI 树链剖分

    题意: 给出一棵含有\(n(1 \leq n \leq 10^5)\)个节点的树,每个顶点只有两种颜色:黑色和白色. 一开始所有的点都是黑色,下面有两种共\(m(1 \leq n \leq 10^5) ...