赶脚官方题解写得挺清楚的说,=_=

注意数据范围用long long,否则会溢出。

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
using namespace std; const int maxn = + ; int n;
vector<int> G[maxn], C[maxn]; inline int lucky(int x)
{
while(x)
{
if(x % != && x % != ) return ;
x /= ;
}
return ;
} long long d[maxn], sz[maxn], f[maxn]; void dfs(int u, int fa)
{
sz[u] = ;
f[u] = ;
for(int i = ; i < G[u].size(); i++)
{
int v = G[u][i];
if(v == fa) continue;
dfs(v, u);
sz[u] += sz[v];
if(C[u][i]) f[u] += sz[v];
else f[u] += f[v];
}
} void dfs2(int u, int fa)
{
for(int i = ; i < G[u].size(); i++)
{
int v = G[u][i];
if(v == fa) continue;
if(C[u][i]) d[v] = sz[] - sz[v];
else d[v] = d[u] + f[u] - f[v];
dfs2(v, u);
}
} int main()
{
//freopen("in.txt", "r", stdin); scanf("%d", &n);
for(int i = ; i < n; i++)
{
int u, v, d; scanf("%d%d%d", &u, &v, &d);
int t = lucky(d);
G[u].push_back(v); C[u].push_back(t);
G[v].push_back(u); C[v].push_back(t);
} dfs(, );
dfs2(, ); long long ans = ;
for(int i = ; i <= n; i++) ans += f[i] * (f[i] - ) + d[i] * (d[i] - ) + * f[i] * d[i];
printf("%I64d\n", ans); return ;
}

代码君

CodeForces 109C 树形DP Lucky Tree的更多相关文章

  1. CodeForces 219D 树形DP

    D. Choosing Capital for Treeland time limit per test 3 seconds memory limit per test 256 megabytes i ...

  2. Codeforces 1153D 树形DP

    题意:有一个游戏,规则如下:每个点有一个标号,为max或min, max是指这个点的值是所有子节点中值最大的那一个,min同理.问如何给这颗树的叶子节点赋值,可以让这棵树的根节点值最大. 思路:很明显 ...

  3. Codeforces 1088E 树形dp+思维

    比赛的时候看到题意没多想就放弃了.结果最后D也没做出来,还掉分了,所以还是题目做的太少,人太菜. 回到正题: 题意:一棵树,点带权值,然后求k个子连通块,使得k个连通块内所有的点权值相加作为分子除以k ...

  4. Codeforces 1179D 树形DP 斜率优化

    题意:给你一颗树,你可以在树上添加一条边,问添加一条边之后的简单路径最多有多少条?简单路径是指路径中的点只没有重复. 思路:添加一条边之后,树变成了基环树.容易发现,以基环上的点为根的子树的点中的简单 ...

  5. CodeForces - 337D 树形dp

    题意:一颗树上有且仅有一只恶魔,恶魔会污染距离它小于等于d的点,现在已经知道被污染的m个点,问恶魔在的可能结点的数量. 容易想到,要是一个点到(距离最远的两个点)的距离都小于等于d,那么这个点就有可能 ...

  6. Up and Down the Tree CodeForces - 1065F (树形dp)

    链接 题目大意:给定$n$结点树, 假设当前在结点$v$, 有两种操作 $(1)$移动到$v$的子树内任意一个叶子上 $(2)$若$v$为叶子, 可以移动到距离$v$不超过$k$的祖先上 初始在结点$ ...

  7. Tree Cutting (Hard Version) CodeForces - 1118F2 (树形DP,计数)

    大意:给定树, 每个点有颜色, 一个合法的边集要满足删除这些边后, 每个连通块内颜色仅有一种, 求所有合法边集的个数 $f[x][0/1]$表示子树$x$中是否还有与$x$连通的颜色 对于每种颜色已经 ...

  8. codeforces 337D 树形DP Book of Evil

    原题直通车:codeforces 337D Book of Evil 题意:一棵n个结点的树上可能存在一个Evil,Evil危险范围为d,即当某个点与它的距离x<=d时,那么x是危险的. 现已知 ...

  9. codeforces 1053D 树形DP

    题意:给一颗树,1为根节点,有两种节点,min或者max,min节点的值是它的子节点的值中最小的,max节点的值是它的子节点的值中最大的,若共有k个叶子,叶子的值依次为1~k. 问给每个叶子的值赋为几 ...

随机推荐

  1. MySQL-基本概念

    一.Mysql逻辑架构 引用自<高性能Mysql> 二.并发控制 读写锁:读锁是共享的,写锁是排他的,会阻塞其他的写锁和读锁. 锁粒度:表锁.行级锁 三.事务 事务(ACID特性):原子性 ...

  2. Linux下安装并配置SSH服务

    一.使用命令检测Linux系统上是否已经安装了SSH服务:(命令:rpm -qa |grep ssh) 二.如果没有安装SSH软件包,可以通过yum 或rpm安装包进行安装(命令:yum instal ...

  3. Linux中gzip、bzip2、zip、unzip、tar使用介绍

    压缩解压缩命令介绍.gz 压缩为gzip文件.bz2 压缩为bzip2文件.tar 打包文件,将多个文件合并成一个目录.tar.gz 先打成tar包,再压缩为gzip文件.tar.bz2 先打成tar ...

  4. MovieReview—A dog's purpose(一只狗的使命)

    Be Here Now                                                             A dog in the movie was reinc ...

  5. Android(java)学习笔记132:eclipse 导入项目是提示:某些项目因位于工作空间目录中而被隐藏。

    导致这个错误的原因是工程重名了: 并不是仅仅指文件夹重名,相信很多人也曾经修改过文件夹的名称,可惜没什么用处,关键是修改工程里面的一个文件! 也就是.project这个文件! 用记事本打开,修改一下& ...

  6. Python3之偏函数

    通过设定参数的默认值,可以降低函数调用的难度.偏函数可以做到这一点 int()函数可以把字符串转换成十进制整数,当传入字符串时,int()默认把字符串为十进制 >>> int('12 ...

  7. Python 进程 线程总结

    操作系统的底层是 进程 线程 实现的 进程 操作系统完成系统进程的切换,中间有状态的保存.进程有自己独立的空间,进程多,资源消耗大 进程是最小的资源管理单位 可以理解为盛放线程的容器 线程 线程是最小 ...

  8. 二叉树、二叉搜索树、平衡二叉树、B树、B+树的精确定义和区别探究

    概述 关于树的概念很多,B树,B+树,红黑树等等. 但是你去翻翻百度百科,或者用百度或者谷歌搜索一下中文的树结构的介绍,全都是狗屁.没有哪个中文网站是真正精确解释树的定义的,尤其是百度百科. 下面我要 ...

  9. C++ 内存分配操作符new和delete详解

    重载new和delete 首先借用C++ Primer 5e的一个例子: string *sp = new string("a value"); ]; 这其实进行了以下三步操作: ...

  10. 在Linux下安装redis

    http://www.cnblogs.com/xiaohongxin/p/6854095.html 追加: 通过配置文件启动最好先./redis.cli shutdown ,再到当前目录在./redi ...