题意

给出一个有向图,并给出仙人掌图的定义

  1. 图本身是强连通的
  2. 每条边属于且只属于一个环

判断输入的图是否是强连通的。

分析

杭电OJ上的数据比较弱,网上一些有明显错误的代码也能AC。

本着求真务实的精神,取网上查阅了相关资料,整理出来一个对自己来说还比较明确的算法。

从DFS森林说起

从有向图的某一点开始进行深度优先遍历,按照遍历的先后顺序会形成一棵树,像这种边被称作树边(Tree Edge)

当然有向图中还可能会存在一些其他的边:

  • 从当前节点连向其祖先节点的边叫做反向边(Back Edge)
  • 从当前节点连向其后代节点的边叫做前向边(Forward Edge)
  • 从当前节点连向其他节点,可能是某个祖先其他分支的节点或者另一颗DFS树的节点,这种边叫做交叉边(Cross Edge)

按边的分类考虑仙人掌图

接下来默认图是强连通的,后面不再强调。

  1. 如果\(u \to v\)是一条前向边,必然有一条从\(v\)到\(u\)的路径\(Path\)。这样\(Path\)就和前向边\(u \to v\)构成了一个环,同时也和树边上的\(u\)到\(v\)的路径构成了一个环,而且这两个环有公共路径\(Path\)。因此得到结论:仙人掌图中不含前向边
  2. 如果\(u \to v\)是一条交叉边,它们的最近公共祖先为\(anc\)。同样也有一条从\(v\)到\(anc\)的路径\(Path_{v \to anc}\),这条路径和\(v\)到\(anc\)的路径或相交或不相交。同样也构成了两个有公共边的环,因此得到结论:仙人掌图中不含交叉边

因此,除了树边只剩下反向边,而且可以看出每有一条反向边\(u \to v\),它和树边上的路径\(v \to u\)构成了一个环。

下面想办法保证每条树边至多被一个环所包含:

  • 一个点最多有一条反向边
  • 在当前节点记录一个可以返回的最小的DFS序,保证反向边指向的节点的DFS序不能小于该值,否则会出现有公共边的两个环。

这是通过一遍DFS实现的。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <stack>
#include <vector>
using namespace std; const int maxn = 10000 + 10; int n, m;
vector<int> G[maxn]; stack<int> S;
int dfs_clock, pre[maxn], low[maxn];
int scc_cnt, sccno[maxn]; void dfs(int u) {
pre[u] = low[u] = ++dfs_clock;
S.push(u);
for(int v : G[u]) {
if(!pre[v]) {
dfs(v);
low[u] = min(low[u], low[v]);
} else if(!sccno[v]) low[u] = min(low[u], pre[v]);
}
if(low[u] == pre[u]) {
scc_cnt++;
for(;;) {
int x = S.top(); S.pop();
sccno[x] = scc_cnt;
if(x == u) break;
}
}
} //Tarjan算法求强连通分量
void find_scc() {
dfs_clock = scc_cnt = 0;
memset(pre, 0, sizeof(pre));
memset(sccno, 0, sizeof(sccno));
for(int i = 0; i < n; i++) if(!pre[i])
dfs(i);
} //第二遍DFS保证是仙人掌图 //color[u]为0表示还没有访问,为1表示正在访问,为2表示已经访问完毕
int color[maxn]; bool dfs2(int u, int minBack) { //minBack表示反向边能指向的最小的DFS序
color[u] = 1;
int backs = 0;//反向边的个数,至多只能有一个
for(int v : G[u]) if(color[v] == 1) { //找到一条反向边
backs++;
if(backs > 1) return false;
if(pre[v] < minBack) return false; //反向边指向的节点的DFS序小于最小值
}
if(backs) minBack = pre[u];
for(int v : G[u]) {
if(color[v] == 2) return false; //前向边或交叉边
if(color[v] == 0) //树边
if(!dfs2(v, minBack)) return false;;
}
color[u] = 2;
return true;
} int main()
{
int T; scanf("%d", &T);
while(T--) {
scanf("%d%d", &n, &m);
for(int i = 0; i < n; i++) G[i].clear();
while(m--) {
int u, v; scanf("%d%d", &u, &v);
G[u].push_back(v);
} find_scc();
if(scc_cnt > 1) { puts("NO"); continue; } memset(color, 0, sizeof(color));
if(!dfs2(0, 0)) puts("NO");
else puts("YES");
} return 0; }

参考资料

1.仙人掌图分析

2.my solution注:这份代码没有考虑只能有一条反向边的限制,但也能在UVa上AC

HDU 3594 Cactus 有向仙人掌图判定的更多相关文章

  1. hdu 3594 Cactus /uva 10510 仙人掌图判定

    仙人掌图(有向):同时满足:1强连通:2任何边不在俩个环中. 个人理解:其实就是环之间相连,两两只有一个公共点,(其实可以缩块),那个公共点是割点.HDU数据弱,网上很多错误代码和解法也可以过. 个人 ...

  2. hdu 3594 强连通好题仙人掌图,对自己的tarjan模板改下用这个

    #include<stdio.h> #include<string.h> #define N 21000 struct node { int v,next; }bian[510 ...

  3. 仙人掌图判定及求直径HDU3594 BZOJ1023

    https://wenku.baidu.com/view/ce296043192e45361066f575.html   //仙人掌图基础知识3个判定条件 http://blog.csdn.net/y ...

  4. HDU 3594.Cactus 仙人掌图

    Cactus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  5. HDU 3594 Cactus (强连通+仙人掌图)

    <题目链接> <转载于 >>> > 题目大意: 给你一个图,让你判断他是不是仙人掌图. 仙人掌图的条件是: 1.是强连通图. 2.每条边在仙人掌图中只属于一个 ...

  6. HDU - 3594 Cactus

    这是一个有向仙人掌的题目,要求判定给定的图是不是强连通图,而且每一条边只能出现在一个环中,这里有一个介绍有向仙人掌的文档:http://files.cnblogs.com/ambition/cactu ...

  7. HDU 3594 Cactus(仙人掌问题)

    http://acm.hdu.edu.cn/showproblem.php?pid=3594 题意: 一个有向图,判断是否强连通和每条边只在一个环中. 思路: 仙人掌问题. 用Tarjan算法判断强连 ...

  8. hdu - 3594 Cactus (强连通)

    http://acm.hdu.edu.cn/showproblem.php?pid=3594 判断给定的图是否是强连通的,并且每条边都只属于一个连通分量. 判断强连通只需要判断缩点之后顶点数是否为1即 ...

  9. HDU 3594 Cactus (强连通分量 + 一个边只能在一个环里)

    题意:判断题目中给出的图是否符合两个条件.1 这图只有一个强连通分量 2 一条边只能出现在一个环里. 思路:条件1的满足只需要tarjan算法正常求强连通分量即可,关键是第二个条件,我们把对边的判断转 ...

随机推荐

  1. NIO基础之Buffer

    java.io 核心概念是流,即面向流的编程,在java中一个流只能是输入流或者输出流,不能同时具有两个概念. java.nio核心是 selector.Channel.Buffer ,是面向缓冲区( ...

  2. 实例练习——轮播图 & 全选/全不选

    1 实例1:轮播图 1)实质就是改变图片的src 2)把图片的路径用数组存起来 3) “下一张”的实现就是改变数组的下标,用一个变量i控制,每次点击下标加1.“上一张”的实现正好相反.注意“i的变化” ...

  3. 1044 拦截导弹 1999年NOIP全国联赛提高组 个人博客:attack.cf

    1044 拦截导弹 1999年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold         题目描述 Description 某国为了防御敌 ...

  4. Android 读取excel 文件

    在面对选择国家地区,选择手机号码区号等信息的时候,常常我们是读取已存好的数据,我现在读取的就是excel里面的数据,所以在此记录下读取的方法以及注意点. 下面就是读取国际地区手机区号的数据效果图: e ...

  5. javaSe-反射2

    //创建实体类 package com.java.chap07.sec03; public class Student { private String name; private Integer a ...

  6. Android(java)学习笔记125:保存数据到SD卡 (附加:保存数据到内存)

    1. 如果我们要想读写数据到SD卡中,首先必须知道SD的路径: File file = new File(Environment.getExternalStorageDirectory()," ...

  7. 【转】iOS-生成Bundle包-引入bundle-使用bundle

    在我们使用第三方框架时,常常看到XXX.bundle的文件. 我们找到该文件,显示包内容,大致看到很多资源文件:图片.配置文本.XIB文件……   什么是Bundle文件? 简单理解,就是资源文件包. ...

  8. Ubuntu系统Apache 2部署SSL证书

    几天前用Apache 2部署了一个静态网页,但通过域名访问时Google提示“不安全”,经了解,原来是缺少证书. 什么是SSL证书? SSL 是指安全套接字层,简而言之,它是一项标准技术,可确保互联网 ...

  9. Python面向对象进阶(二)

    Python面向对象进阶2.html :first-child{margin-top:0!important}img.plugin{box-shadow:0 1px 3px rgba(0,0,0,.1 ...

  10. 拨出网线后,网卡IP丢失

    /etc/network/interfaces与NetworkManager 问题:在Centos7上把网线拨出后,发现网卡状态是down,并且网卡上的IP丢失 原因:此网卡被NetworkManag ...