luogu2951 noip2017 小凯的疑惑
在考场上我们可以打表发现规律是 $ ab-a-b $ 。下面给出证明(看的网上的)。
若有正数 $ x $ 不能被 $ a $ , $ b $ 组合出,假设 $ a>b $ ,则存在
\]
其中 $ p>0, q<0, p-b<0, q+a>0 $ 。
为什么呢?如果学过exgcd的话,很容易理解上述形式。$ (p,q) $ 是一组解的话,则 $ (p-b,q+a) $ 是最接近的另一组解。$ p>0 $ 而 $ q<0 $,我们自然想要把 $ p $ 放小一点而把 $ q $ 放大一点。然而,即使是稍微一调整,也无法满足,则 $ x $ 是拼不出的。
于是 $ 0<p<b $ , $ -a<q<0 $,则 $ x $ 最大当 $ p=b-1 $ 且 $ q=-1 $,此时 $$ x=a(b-1)-b=ab-a-b $$
证毕。
#include <iostream>
#include <cstdio>
using namespace std;
long long a, b;
int main(){
cin>>a>>b;
cout<<a*b-a-b;
return 0;
}
luogu2951 noip2017 小凯的疑惑的更多相关文章
- 【比赛】NOIP2017 小凯的疑惑
找规律:ans=a*b-a-b 证明:(可见 体系知识) gcd(A, B) = 1 → lcm(A, B) = AB 剩余类,把所有整数划分成m个等价类,每个等价类由相互同余的整数组成 任何数分成m ...
- 联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)
前言: 数学题,对于我这种菜B还是需要多磨啊 Simple 首先它问不是好数的数量,可以转化为用总数量减去是好数的数量. 求"好数"的数量: 由裴蜀定理得,如果某个数\(i\)不能 ...
- NOIP2017 小凯的疑惑
题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...
- NOIP2017 小凯的疑惑 解题报告(赛瓦维斯特定理)
题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...
- 题解【洛谷P3951】[NOIP2017]小凯的疑惑
题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想知道在无法准确支付的物品中,最贵的 ...
- luogu 3951 小凯的疑惑
noip2017 D1T1 小凯的疑惑 某zz选手没有看出这道结论题,同时写出了exgcd却不会用,只能打一个哈希表骗了30分 题目大意: 两个互质的正整数a和b,求一个最小的正整数使这个数无法表示为 ...
- Luogu [P3951] 小凯的疑惑
题目详见:[P3951]小凯的疑惑 首先说明:此题为一道提高组的题.但其实代码并没有提高组的水平.主要考的是我们的推断能力,以及看到题后的分析能力. 分析如下: 证明当k>ab-a-b时,小凯可 ...
- NOIP 2017 小凯的疑惑
# NOIP 2017 小凯的疑惑 思路 a,b 互质 求最大不能表示出来的数k 则k与 a,b 互质 这里有一个结论:(网上有证明)不过我是打表找的规律 若 x,y(设x<y) 互质 则 : ...
- 2017提高组D1T1 洛谷P3951 小凯的疑惑
洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...
随机推荐
- Linux下端口被占用如何解决???
有时候关闭软件后,后台进程死掉,导致端口被占用.下面以JBoss端口8083被占用为例,列出详细解决过程. 解决方法: 1.查找被占用的端口 netstat -tln netstat -tln | g ...
- Python一个有意思的地方:reduce、map、filter
今天阅读了关于Python函数式编程的系列文章,地址在这里: http://www.cnblogs.com/huxi/archive/2011/06/24/2089358.html 里面提到了四个内建 ...
- CentOS7.3+MySQL5.7+Apache2.4+PHP7.1+phpMyAdmin4.7+JDK1.8+SVN1.6+Jenkins2.1环境搭建
CentOS7.3+MySQL5.7+Apache2.4+PHP7.1+phpMyAdmin4.7+JDK1.8+SVN1.6+Jenkins2.1环境搭建 1.安装CentOS7.3虚拟机安装说明: ...
- Literals
Uppercase or lowercase L means long (however, using a lowercase l is confusing because it can look l ...
- 团队作业-Beta冲刺(周三)
这个作业属于哪个课程 https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass1 这个作业要求在哪里 https://edu.cnblo ...
- python_97_类的继承2
# 经典类与新式类差别主要体现在多继承上 #多继承是从左到有 class People():#经典类 #class People(object):#新式类 def __init__(self,name ...
- 《队长说得队》第八次团队作业Alpha冲刺
项目 内容 这个作业属于哪个课程 >>2016级计算机科学与工程学院软件工程(西北师范大学) 这个作业的要求在哪里 >>实验十二 团队作业8:软件测试与ALPHA冲刺 团队名称 ...
- webgis技术在智慧城市综合治理(9+X)网格化社会管理平台(综治平台)的应用研究
综治中心9+X网格化社会管理平台 为落实中央关于加强创新社会治理的要求,适应国家治理体系和治理能力现代化要求,以基层党组织为核心,以整合资源.理顺关系.健全机制.发挥作用为目标,规范街道.社区综治中心 ...
- 01_13_Struts_默认Action
01_13_Struts_默认Action 1. 配置struts默认Action <package name="default" namespace="/&quo ...
- 01_7_Struts_用Action的属性接收参数
01_7_Struts_用Action的属性接收参数 1. 配置struts.xml文件 <package name="user" namespace="/user ...