这里的网络架构和论文中插图中的网络架构是相一致的。
对了,忘了说了,这里使用的keras版本是1.2.2,等源码读完之后,我自己改一个2.0.6版本上传到github上面。
可别直接粘贴复制,里面有些中文的解释,不一定可行的。
#defint input shape
input_shape = (300,300,3)
#defint the number of classes
num_classes = 21

#Here the network is wrapped in to a dictory because it more easy to make some operations.
net = {}
# Block 1
input_tensor = Input(shape=input_shape)
#defint the image hight and wight
img_size = (input_shape[1], input_shape[0])
net['input'] = input_tensor
net['conv1_1'] = Convolution2D(64, 3, 3,
activation='relu',
border_mode='same',
name='conv1_1')(net['input'])
net['conv1_2'] = Convolution2D(64, 3, 3,
activation='relu',
border_mode='same',
name='conv1_2')(net['conv1_1'])
net['pool1'] = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same',
name='pool1')(net['conv1_2'])
# Block 2
net['conv2_1'] = Convolution2D(128, 3, 3,
activation='relu',
border_mode='same',
name='conv2_1')(net['pool1'])
net['conv2_2'] = Convolution2D(128, 3, 3,
activation='relu',
border_mode='same',
name='conv2_2')(net['conv2_1'])
net['pool2'] = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same',
name='pool2')(net['conv2_2'])
# Block 3
net['conv3_1'] = Convolution2D(256, 3, 3,
activation='relu',
border_mode='same',
name='conv3_1')(net['pool2'])
net['conv3_2'] = Convolution2D(256, 3, 3,
activation='relu',
border_mode='same',
name='conv3_2')(net['conv3_1'])
net['conv3_3'] = Convolution2D(256, 3, 3,
activation='relu',
border_mode='same',
name='conv3_3')(net['conv3_2'])
net['pool3'] = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same',
name='pool3')(net['conv3_3'])
# Block 4
net['conv4_1'] = Convolution2D(512, 3, 3,
activation='relu',
border_mode='same',
name='conv4_1')(net['pool3'])
net['conv4_2'] = Convolution2D(512, 3, 3,
activation='relu',
border_mode='same',
name='conv4_2')(net['conv4_1'])
#the first layer be operated
net['conv4_3'] = Convolution2D(512, 3, 3,
activation='relu',
border_mode='same',
name='conv4_3')(net['conv4_2'])
net['pool4'] = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same',
name='pool4')(net['conv4_3'])
# Block 5
net['conv5_1'] = Convolution2D(512, 3, 3,
activation='relu',
border_mode='same',
name='conv5_1')(net['pool4'])
net['conv5_2'] = Convolution2D(512, 3, 3,
activation='relu',
border_mode='same',
name='conv5_2')(net['conv5_1'])
net['conv5_3'] = Convolution2D(512, 3, 3,
activation='relu',
border_mode='same',
name='conv5_3')(net['conv5_2'])
net['pool5'] = MaxPooling2D((3, 3), strides=(1, 1), border_mode='same',
name='pool5')(net['conv5_3'])
#here is the FC6 in the orginal VGG16 Network,There move to Atrous Convolution for the reason i don't know.
# FC6
net['fc6'] = AtrousConvolution2D(1024, 3, 3, atrous_rate=(6, 6),
activation='relu', border_mode='same',
name='fc6')(net['pool5'])
#the second layer to be operated
# FC7
net['fc7'] = Convolution2D(1024, 1, 1, activation='relu',
border_mode='same', name='fc7')(net['fc6'])
# x = Dropout(0.5, name='drop7')(x)
# Block 6
net['conv6_1'] = Convolution2D(256, 1, 1, activation='relu',
border_mode='same',
name='conv6_1')(net['fc7'])
#the third layer to be opreated
net['conv6_2'] = Convolution2D(512, 3, 3, subsample=(2, 2),
activation='relu', border_mode='same',
name='conv6_2')(net['conv6_1'])
# Block 7
net['conv7_1'] = Convolution2D(128, 1, 1, activation='relu',
border_mode='same',
name='conv7_1')(net['conv6_2'])
net['conv7_2'] = ZeroPadding2D()(net['conv7_1'])
#the forth layer to be operated
net['conv7_2'] = Convolution2D(256, 3, 3, subsample=(2, 2),
activation='relu', border_mode='valid',
name='conv7_2')(net['conv7_2'])
# Block 8
net['conv8_1'] = Convolution2D(128, 1, 1, activation='relu',
border_mode='same',
name='conv8_1')(net['conv7_2'])
#the fifth layer to be operated
net['conv8_2'] = Convolution2D(256, 3, 3, subsample=(2, 2),
activation='relu', border_mode='same',
name='conv8_2')(net['conv8_1'])
# the last layer to be operated
# Last Pool
net['pool6'] = GlobalAveragePooling2D(name='pool6')(net['conv8_2']) # Prediction from conv4_3
# net['conv4_3']._shape = (?, 38, 38, 512)
# 算了还是说中文吧,这个层是用来对输入数据进行正则化的层,有参数需要学习,输出的数据形式和输入输入形式是一致的。
net['conv4_3_norm'] = Normalize(20, name='conv4_3_norm')(net['conv4_3'])
num_priors = 3
#here is *4 because the box need 4 number to define,here is only predice the box coordinate
x = Convolution2D(num_priors * 4, 3, 3, border_mode='same',
name='conv4_3_norm_mbox_loc')(net['conv4_3_norm'])
net['conv4_3_norm_mbox_loc'] = x
flatten = Flatten(name='conv4_3_norm_mbox_loc_flat')
net['conv4_3_norm_mbox_loc_flat'] = flatten(net['conv4_3_norm_mbox_loc'])
#the box coordinate is finished now it will perdice the classes
name = 'conv4_3_norm_mbox_conf'
if num_classes != 21:
name += '_{}'.format(num_classes)
# here is start predict the classes
x = Convolution2D(num_priors * num_classes, 3, 3, border_mode='same',
name=name)(net['conv4_3_norm'])
net['conv4_3_norm_mbox_conf'] = x
flatten = Flatten(name='conv4_3_norm_mbox_conf_flat')
net['conv4_3_norm_mbox_conf_flat'] = flatten(net['conv4_3_norm_mbox_conf'])
#这里是用来对conv4_3层的feature map生成论文中所说的default box,对没错,就是直接使用Feature map来进行default box的生成
#当然这里要指定一些参数,这些参数是需要好好斟酌的。
priorbox = PriorBox(img_size, 30.0, aspect_ratios=[2],
variances=[0.1, 0.1, 0.2, 0.2],
name='conv4_3_norm_mbox_priorbox')
net['conv4_3_norm_mbox_priorbox'] = priorbox(net['conv4_3_norm'])
#好了,到这里第一个层的操作就完成了,下面其他层的操作都是相类似的啦。
# Prediction from fc7
num_priors = 6
net['fc7_mbox_loc'] = Convolution2D(num_priors * 4, 3, 3,
border_mode='same',
name='fc7_mbox_loc')(net['fc7'])
flatten = Flatten(name='fc7_mbox_loc_flat')
net['fc7_mbox_loc_flat'] = flatten(net['fc7_mbox_loc'])
name = 'fc7_mbox_conf'
if num_classes != 21:
name += '_{}'.format(num_classes)
net['fc7_mbox_conf'] = Convolution2D(num_priors * num_classes, 3, 3,
border_mode='same',
name=name)(net['fc7'])
flatten = Flatten(name='fc7_mbox_conf_flat')
net['fc7_mbox_conf_flat'] = flatten(net['fc7_mbox_conf'])
priorbox = PriorBox(img_size, 60.0, max_size=114.0, aspect_ratios=[2, 3],
variances=[0.1, 0.1, 0.2, 0.2],
name='fc7_mbox_priorbox')
net['fc7_mbox_priorbox'] = priorbox(net['fc7'])
# Prediction from conv6_2
num_priors = 6
x = Convolution2D(num_priors * 4, 3, 3, border_mode='same',
name='conv6_2_mbox_loc')(net['conv6_2'])
net['conv6_2_mbox_loc'] = x
flatten = Flatten(name='conv6_2_mbox_loc_flat')
net['conv6_2_mbox_loc_flat'] = flatten(net['conv6_2_mbox_loc'])
name = 'conv6_2_mbox_conf'
if num_classes != 21:
name += '_{}'.format(num_classes)
x = Convolution2D(num_priors * num_classes, 3, 3, border_mode='same',
name=name)(net['conv6_2'])
net['conv6_2_mbox_conf'] = x
flatten = Flatten(name='conv6_2_mbox_conf_flat')
net['conv6_2_mbox_conf_flat'] = flatten(net['conv6_2_mbox_conf'])
priorbox = PriorBox(img_size, 114.0, max_size=168.0, aspect_ratios=[2, 3],
variances=[0.1, 0.1, 0.2, 0.2],
name='conv6_2_mbox_priorbox')
net['conv6_2_mbox_priorbox'] = priorbox(net['conv6_2'])
# Prediction from conv7_2
num_priors = 6
x = Convolution2D(num_priors * 4, 3, 3, border_mode='same',
name='conv7_2_mbox_loc')(net['conv7_2'])
net['conv7_2_mbox_loc'] = x
flatten = Flatten(name='conv7_2_mbox_loc_flat')
net['conv7_2_mbox_loc_flat'] = flatten(net['conv7_2_mbox_loc'])
name = 'conv7_2_mbox_conf'
if num_classes != 21:
name += '_{}'.format(num_classes)
x = Convolution2D(num_priors * num_classes, 3, 3, border_mode='same',
name=name)(net['conv7_2'])
net['conv7_2_mbox_conf'] = x
flatten = Flatten(name='conv7_2_mbox_conf_flat')
net['conv7_2_mbox_conf_flat'] = flatten(net['conv7_2_mbox_conf'])
priorbox = PriorBox(img_size, 168.0, max_size=222.0, aspect_ratios=[2, 3],
variances=[0.1, 0.1, 0.2, 0.2],
name='conv7_2_mbox_priorbox')
net['conv7_2_mbox_priorbox'] = priorbox(net['conv7_2'])
# Prediction from conv8_2
num_priors = 6
x = Convolution2D(num_priors * 4, 3, 3, border_mode='same',
name='conv8_2_mbox_loc')(net['conv8_2'])
net['conv8_2_mbox_loc'] = x
flatten = Flatten(name='conv8_2_mbox_loc_flat')
net['conv8_2_mbox_loc_flat'] = flatten(net['conv8_2_mbox_loc'])
name = 'conv8_2_mbox_conf'
if num_classes != 21:
name += '_{}'.format(num_classes)
x = Convolution2D(num_priors * num_classes, 3, 3, border_mode='same',
name=name)(net['conv8_2'])
net['conv8_2_mbox_conf'] = x
flatten = Flatten(name='conv8_2_mbox_conf_flat')
net['conv8_2_mbox_conf_flat'] = flatten(net['conv8_2_mbox_conf'])
priorbox = PriorBox(img_size, 222.0, max_size=276.0, aspect_ratios=[2, 3],
variances=[0.1, 0.1, 0.2, 0.2],
name='conv8_2_mbox_priorbox')
net['conv8_2_mbox_priorbox'] = priorbox(net['conv8_2'])
# Prediction from pool6
num_priors = 6
x = Dense(num_priors * 4, name='pool6_mbox_loc_flat')(net['pool6'])
net['pool6_mbox_loc_flat'] = x
name = 'pool6_mbox_conf_flat'
if num_classes != 21:
name += '_{}'.format(num_classes)
x = Dense(num_priors * num_classes, name=name)(net['pool6'])
net['pool6_mbox_conf_flat'] = x
priorbox = PriorBox(img_size, 276.0, max_size=330.0, aspect_ratios=[2, 3],
variances=[0.1, 0.1, 0.2, 0.2],
name='pool6_mbox_priorbox')
#由于这里的维数不对,因此要修改Feature map层对应的维数信息
if K.image_dim_ordering() == 'tf':
target_shape = (1, 1, 256)
else:
target_shape = (256, 1, 1)
net['pool6_reshaped'] = Reshape(target_shape,
name='pool6_reshaped')(net['pool6'])
net['pool6_mbox_priorbox'] = priorbox(net['pool6_reshaped'])
#好啦,到这里位置,所有的信息都已经生成了,下一步就是根据这些信息来进行训练或者是预测了。
# Gather all predictions
net['mbox_loc'] = merge([net['conv4_3_norm_mbox_loc_flat'],
net['fc7_mbox_loc_flat'],
net['conv6_2_mbox_loc_flat'],
net['conv7_2_mbox_loc_flat'],
net['conv8_2_mbox_loc_flat'],
net['pool6_mbox_loc_flat']],
mode='concat', concat_axis=1, name='mbox_loc')
net['mbox_conf'] = merge([net['conv4_3_norm_mbox_conf_flat'],
net['fc7_mbox_conf_flat'],
net['conv6_2_mbox_conf_flat'],
net['conv7_2_mbox_conf_flat'],
net['conv8_2_mbox_conf_flat'],
net['pool6_mbox_conf_flat']],
mode='concat', concat_axis=1, name='mbox_conf')
net['mbox_priorbox'] = merge([net['conv4_3_norm_mbox_priorbox'],
net['fc7_mbox_priorbox'],
net['conv6_2_mbox_priorbox'],
net['conv7_2_mbox_priorbox'],
net['conv8_2_mbox_priorbox'],
net['pool6_mbox_priorbox']],
mode='concat', concat_axis=1,
name='mbox_priorbox')
if hasattr(net['mbox_loc'], '_keras_shape'):
num_boxes = net['mbox_loc']._keras_shape[-1] // 4
elif hasattr(net['mbox_loc'], 'int_shape'):
num_boxes = K.int_shape(net['mbox_loc'])[-1] // 4
net['mbox_loc'] = Reshape((num_boxes, 4),
name='mbox_loc_final')(net['mbox_loc'])
net['mbox_conf'] = Reshape((num_boxes, num_classes),
name='mbox_conf_logits')(net['mbox_conf'])
net['mbox_conf'] = Activation('softmax',
name='mbox_conf_final')(net['mbox_conf'])
net['predictions'] = merge([net['mbox_loc'],
net['mbox_conf'],
net['mbox_priorbox']],
mode='concat', concat_axis=2,
name='predictions')
model = Model(net['input'], net['predictions'])

SSD Network Architecture--keras version的更多相关文章

  1. Network architecture for minimalistic connected objects

    In one embodiment, a network architecture comprises minimalistic connected objects (MCOs), distribut ...

  2. 【Network Architecture】Densely Connected Convolutional Networks 论文解析

    目录 0. Paper link 1. Overview 2. DenseNet Architecture 2.1 Analogy to ResNet 2.2 Composite function 2 ...

  3. [Network Architecture]Mask R-CNN论文解析(转)

    前言 最近有一个idea需要去验证,比较忙,看完Mask R-CNN论文了,最近会去研究Mask R-CNN的代码,论文解析转载网上的两篇博客 技术挖掘者 remanented 文章1 论文题目:Ma ...

  4. 【Network Architecture】Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning(转)

    文章来源: https://www.cnblogs.com/shouhuxianjian/p/7786760.html Feature Extractor[Inception v4] 0. 背景 随着 ...

  5. [Network Architecture]Xception 论文笔记(转)

    文章来源 论文:Xception: Deep Learning with Depthwise Separable Convolutions 论文链接:https://arxiv.org/abs/161 ...

  6. 【Network Architecture】Feature Pyramid Networks for Object Detection(FPN)论文解析(转)

    目录 0. 前言 1. 博客一 2.. 博客二 0. 前言   这篇论文提出了一种新的特征融合方式来解决多尺度问题, 感觉挺有创新性的, 如果需要与其他网络进行拼接,还是需要再回到原文看一下细节.这里 ...

  7. [Python Debug]Kernel Crash While Running Neural Network with Keras|Jupyter Notebook运行Keras服务器宕机原因及解决方法

    最近做Machine Learning作业,要在Jupyter Notebook上用Keras搭建Neural Network.结果连最简单的一层神经网络都运行不了,更奇怪的是我先用iris数据集跑了 ...

  8. [Keras] Develop Neural Network With Keras Step-By-Step

    简单地训练一个四层全连接网络. Ref: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/ 1 ...

  9. [Network Architecture]DPN(Dual Path Network)算法详解(转)

    https://blog.csdn.net/u014380165/article/details/75676216 论文:Dual Path Networks 论文链接:https://arxiv.o ...

随机推荐

  1. 邁向IT專家成功之路的三十則鐵律 鐵律二十:IT人證照之道-收斂

    這是一個各行各業都講究專業證照的世代,彷彿證照只要比別人少一些就感覺自己遜掉了.現今IT領域的證照肯定是所有行業中最複雜的,無論是想求職升遷的還是想轉進IT跑道的,許多人由於受到媒體與廣告的影響,都不 ...

  2. java高级编程-使用反射强制给private字段赋值

    转自:http://blog.csdn.net/yaerfeng/article/details/7103397 今天项目中遇到了一个问题,要调用一个类,并获取这个类的属性进行赋值然后将这个类传递到方 ...

  3. xamarin studio 中SpinButton ComBox Splid 鼠标放上去就会自动接收焦点,然后进行数值变化

    公司做跨平台项目,用XamarinStudio 开发mac版本,语法还是C#,但是,尼玛XamarinStudio的控件就是坑爹啊. 其他的暂时不累赘,笔者画界面,一堆控件放到一个界面上,当超出屏幕时 ...

  4. 如何让你的服务屏蔽Shodan扫描

    1. 前言 在互联网中,充斥着各种各样的网络设备,shodan等搜索引擎提供给了我们一个接口,让我们可以在输入一些过滤条件就可以检索出网络中相关的设备. 对于我们的一些可能有脆弱性或者比较隐私的服务, ...

  5. UVA - 1416 Warfare And Logistics (最短路)

    Description The army of United Nations launched a new wave of air strikes on terroristforces. The ob ...

  6. 混合背包 hdu5410 CRB and His Birthday

    传送门:点击打开链接 题意:你有M块钱,如今有N件商品 第i件商品要Wi块,假设你购买x个这种商品.你将得到Ai*x+Bi个糖果 问能得到的最多的糖果数 思路:很好的一道01背包和全然背包结合的题目 ...

  7. iOS 插件制作

    概述 我们平时也使用了非常多的xcode插件,尽管官方对于插件制作没有提供不论什么支持,可是载入三方的插件,默认还是被同意的.第三方的插件,须要存放在 ~/Library/Application Su ...

  8. SDUT 1068-Number Steps(数学:直线)

    Number Steps Time Limit: 1000ms   Memory limit: 10000K  有疑问?点这里^_^ 题目描写叙述 Starting from point (0,0) ...

  9. Spring里bean之间的循环依赖解决与源码解读

    通过前几节的分析,已经成功将bean实例化,但是大家一定要将bean的实例化和完成bean的创建区分开,bean的实例化仅仅是获得了bean的实例,该bean仍在继续创建之中,之后在该bean实例的基 ...

  10. Introducing Gradle (Ep 2, Android Studio)

    https://www.youtube.com/watch?v=cD7NPxuuXYY    Introducing Gradle (Ep 2, Android Studio) https://www ...