上帝与集合的正确用法

【问题描述】

【输入格式】

第一行一个T,接下来T行,每行一个正整数p,代表你需要取模的值。

【输出格式】

T行,每行一个正整数,为答案对p取模后的值。

【样例输入】

3
2
3
6

【样例输出】

0
1
4

【数据范围】

对于100%的数据,T<=1000,p<=10^7

题解:
 

①->②:把模数 p 拆成 2kq 的形式,其中 q 是奇数

②->③:

将上式左右同除以2k

不会同余的蒟蒻只能这么推了

③->④:

此时 q 是奇数,必定与 2n 互质

则套用欧拉定理

考虑一个数的 phi 必定比它本身的值小

那么如此递归下去模数会变为 1,则返回 0

回溯得到答案

  1. #include<cmath>
  2. #include<cstdio>
  3. #include<cstdlib>
  4. #include<cstring>
  5. #include<iostream>
  6. #include<algorithm>
  7. using namespace std;
  8. int n;
  9. inline void Scan(int &x)
  10. {
  11. char c;
  12. bool o = false;
  13. while(!isdigit(c = getchar())) o = (c != '-') ? o : true;
  14. x = c - '';
  15. while(isdigit(c = getchar())) x = x * + c - '';
  16. if(o) x = -x;
  17. }
  18. int Phi(int x)
  19. {
  20. int ans = x;
  21. for(int i = ; i * i <= x; ++i)
  22. {
  23. if(!(x % i))
  24. {
  25. while(!(x % i)) x /= i;
  26. ans /= i, ans *= (i - );
  27. }
  28. }
  29. if(x ^ ) ans /= x, ans *= (x - );
  30. return ans;
  31. }
  32. int Pow(int x, int n, int mod)
  33. {
  34. int sum = ;
  35. while(n)
  36. {
  37. if(n & ) sum = (long long) sum * x % mod;
  38. x = (long long) x * x % mod;
  39. n >>= ;
  40. }
  41. return sum % mod;
  42. }
  43. int Work(int p)
  44. {
  45. if(p == ) return ;
  46. int k = ;
  47. while(!(p & )) p >>= , ++k;
  48. int phi = Phi(p);
  49. int s = (Work(phi) - k) % phi;
  50. if(s < ) s += phi;
  51. return Pow(, s, p) << k;
  52. }
  53. int main()
  54. {
  55. Scan(n);
  56. int p;
  57. for(int i = ; i <= n; ++i)
  58. {
  59. Scan(p);
  60. printf("%d\n", Work(p));
  61. }
  62. }

BZOJ 3384 上帝与集合的正确用法的更多相关文章

  1. bzoj 3884 上帝与集合的正确用法 指数循环节

    3884: 上帝与集合的正确用法 Time Limit: 5 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description   根据一些 ...

  2. 【数学】[BZOJ 3884] 上帝与集合的正确用法

    Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元” ...

  3. BZOJ 3884 上帝与集合的正确用法

    Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新的元素,称作&quo ...

  4. bzoj P3884 上帝与集合的正确用法

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  5. BZOJ 3884 上帝与集合的正确用法(扩展欧拉定理)

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  6. bzoj 3884 上帝与集合的正确用法(递归,欧拉函数)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3884 [题意] 求2^2^2… mod p [思路] 设p=2^k * q+(1/0) ...

  7. BZOJ 3884: 上帝与集合的正确用法 [欧拉降幂]

    PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}} ...

  8. BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)

    \(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...

  9. 解题:BZOJ 3884 上帝与集合的正确用法

    题面 好久以前写的,发现自己居然一直没有写题解=.= 扩展欧拉定理:在$b>φ(p)$时有$a^b \equiv a^{b\%φ(p)+φ(p)}(mod$ $p)$ 然后每次递归那个$a^{b ...

随机推荐

  1. 【贪心 二分图 线段树】cf533A. Berland Miners

    通过霍尔定理转化判定方式的一步还是很妙的 The biggest gold mine in Berland consists of n caves, connected by n - 1 transi ...

  2. MySQL - UNION 和 UNION ALL 操作符

    UNION 操作符 UNION 操作符用于合并两个或多个 SELECT 语句的结果集. 请注意,UNION 内部的 SELECT 语句必须拥有相同数量的列.列也必须拥有相似的数据类型.同时,每条 SE ...

  3. [Wolfgang Mauerer] 深入linux 内核架构 第二章 进程管理与调度【未完】

     作为Linux开发爱好者,从事linux 开发有三年多时间.做过bsp移植,熟悉u-boot代码执行流程:看过几遍<linux 设备驱动程序开发>,分析过kernel启动流程,写过驱动, ...

  4. MongDB之各种修改操作

    接口IMongDaoUpdate: package com.net.test.mongdb.dao; import com.net.test.mongdb.entity.User; public in ...

  5. emwin如何在windows10下vs2015或2017进行仿真。

    Make sure the selected Windows SDK is installed:Properties -> Configuration Properties -> Gene ...

  6. 4 Values whose Sum is 0 POJ - 2785

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 29243   Accep ...

  7. Codeforces Round #443 (Div. 2) C 位运算

    C. Short Program time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  8. Leetcode 96. 不同的二叉搜索树

    题目链接 https://leetcode.com/problems/unique-binary-search-trees/description/ 题目描述 给定一个整数 n,求以 1 ... n ...

  9. TCP/IP网络编程之优于select的epoll(一)

    epoll的理解及应用 select复用方法由来已久,因此,利用该技术后,无论如何优化程序性能也无法同时接入上百个客户端.这种select方式并不适合以web服务端开发为主流的现代开发环境,所以要学习 ...

  10. Java中Scanner中nextLine()方法和next()方法的区别

    https://blog.csdn.net/hello_word2/article/details/54895106