BZOJ 3384 上帝与集合的正确用法
上帝与集合的正确用法
【问题描述】
【输入格式】
【输出格式】
【样例输入】
3
2
3
6
【样例输出】
0
1
4
【数据范围】
题解:
①->②:把模数 p 拆成 2kq 的形式,其中 q 是奇数
②->③:
将上式左右同除以2k
不会同余的蒟蒻只能这么推了
③->④:
此时 q 是奇数,必定与 2n 互质
则套用欧拉定理
考虑一个数的 phi 必定比它本身的值小
那么如此递归下去模数会变为 1,则返回 0
回溯得到答案
#include<cmath>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n;
inline void Scan(int &x)
{
char c;
bool o = false;
while(!isdigit(c = getchar())) o = (c != '-') ? o : true;
x = c - '';
while(isdigit(c = getchar())) x = x * + c - '';
if(o) x = -x;
}
int Phi(int x)
{
int ans = x;
for(int i = ; i * i <= x; ++i)
{
if(!(x % i))
{
while(!(x % i)) x /= i;
ans /= i, ans *= (i - );
}
}
if(x ^ ) ans /= x, ans *= (x - );
return ans;
}
int Pow(int x, int n, int mod)
{
int sum = ;
while(n)
{
if(n & ) sum = (long long) sum * x % mod;
x = (long long) x * x % mod;
n >>= ;
}
return sum % mod;
}
int Work(int p)
{
if(p == ) return ;
int k = ;
while(!(p & )) p >>= , ++k;
int phi = Phi(p);
int s = (Work(phi) - k) % phi;
if(s < ) s += phi;
return Pow(, s, p) << k;
}
int main()
{
Scan(n);
int p;
for(int i = ; i <= n; ++i)
{
Scan(p);
printf("%d\n", Work(p));
}
}
BZOJ 3384 上帝与集合的正确用法的更多相关文章
- bzoj 3884 上帝与集合的正确用法 指数循环节
3884: 上帝与集合的正确用法 Time Limit: 5 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 根据一些 ...
- 【数学】[BZOJ 3884] 上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元” ...
- BZOJ 3884 上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新的元素,称作&quo ...
- bzoj P3884 上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ 3884 上帝与集合的正确用法(扩展欧拉定理)
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- bzoj 3884 上帝与集合的正确用法(递归,欧拉函数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3884 [题意] 求2^2^2… mod p [思路] 设p=2^k * q+(1/0) ...
- BZOJ 3884: 上帝与集合的正确用法 [欧拉降幂]
PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}} ...
- BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)
\(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...
- 解题:BZOJ 3884 上帝与集合的正确用法
题面 好久以前写的,发现自己居然一直没有写题解=.= 扩展欧拉定理:在$b>φ(p)$时有$a^b \equiv a^{b\%φ(p)+φ(p)}(mod$ $p)$ 然后每次递归那个$a^{b ...
随机推荐
- sendmail安装与配置
一.安装sendmail与mail 1.安装sendmail: 1) centos下可以安装命令:yum -y install sendmail 2) 安装完后启动sendmail命令:servic ...
- git bash 学习2 --更改url 重置密钥 Permission denied (publickey)问题
在今天的上传过程中,我意外地遇到了一个问题,,每一次push都会出现 $ git push origin master Permission denied (publickey). fatal: Co ...
- Mysql关闭和修改密码
数据库的关闭方法: 1.优雅的关闭数据库的方法:mysqladmin -uroot -p123456 shutdown 2.脚本关闭:/etc/init.d/mysqld stop 3.使用kill信 ...
- oracle一些常用的数据类型
字符数据类型 char数据类型 当需要固定长度时,使用char数据类型,此数据类型长度可以使1-2000字节.若是不指定大小默认占1字节,如果长度有空余时会以空格进行填充,如果大于设定长度 数据库则会 ...
- vue系列之vue cli 3引入ts
插件 Vue2.5+ Typescript 引入全面指南 vue-class-component强化 Vue 组件,使用 TypeScript/装饰器 增强 Vue 组件 vue-property-d ...
- videojs的使用
[官网]http://www.videojs.com/ videojs就提供了这样一套解决方案,他是一个兼容HTML5的视频播放工具,早期版本兼容所有浏览器,方法是:提供三个后缀名的视频,并在不支持h ...
- python各种操作列表的方法及案例
一.循环的使用方法 names = ["张真","刘德华","哈林","谢霆锋","张柏芝"] fo ...
- django开发傻瓜教程-1-安装和HelloWorld
安装 sudo pip install Django 新建项目 django-admin startproject XXX 启动项目 进入主目录下 python manage.py runserver ...
- JAVA运行环境配置
win10下,右击我的电脑-->高级系统设置-->高级-->环境变量-->系统变量 1新建 变量名 JAVA_HOME 变量值 C:\Program Files\Jav ...
- Js中的假值_ES5中定义的ToBoolean方法强制类型转换后值为false
你不知道的Javascript(中)--ToBoolean javascript中的值可以分为以下两类: 1.可以被强制类型转换为false的值 2.其他(被强制类型转换为true的值) 假值---以 ...