D. Bag of mice
time limit per test

2 seconds

memory limit per test

256 megabytes

Promblem description
 
The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed 10 - 9.

Examples
Input
1 3
Output
0.500000000
Input
5 5
Output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins.

很有趣的概率DP,但是我一开始没有向概率的方向想,妄图找出规律,还是我太年轻了。

为什么要用DP呢,我想是这个题的前后状态是有关联的,后面的状态可以转移成前面的状态,这就是精髓所在吧。

 #include<bits/stdc++.h>
using namespace std;
#define mem(a,b) memset(a,b,sizeof(a))
#define ll long long
#define inf 1000000000
#define maxn 1005
#define maxm 100005
#define eps 1e-10
#define for0(i,n) for(int i=1;i<=(n);++i)
#define for1(i,n) for(int i=1;i<=(n);++i)
#define for2(i,x,y) for(int i=(x);i<=(y);++i)
#define for3(i,x,y) for(int i=(x);i>=(y);--i)
#define mod 1000000007
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>'') {if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<='') {x=*x+ch-'';ch=getchar();}
return x*f;
}
double dp[maxn][maxn];//用来表示到王妃抓时有i白j黑王妃获胜的概率,剩下i个白,j个黑
int main()
{
int n,m;
n=read();m=read();
for(int i=;i<=n;++i) dp[i][]=;
for(int i=;i<=m;++i) dp[][i]=;
//情况分析:
//dp[i][j]有3种渠道 1、王妃抽中白球 2、王妃抽中黑球,龙也抽黑球,跳出白的3、跳出黑的成
for(int i=;i<=n;++i)
for(int j=;j<=m;++j)
{
dp[i][j]+=(double)(i)/(i+j);
if(j>=) dp[i][j]+=(double)(j)/(double)(i+j)*(double)(j-)/(double)(i+j-)*(double)(i)/(double)(i+j-)*dp[i-][j-];
if(j>=) dp[i][j]+=(double)(j)/(double)(i+j)*(double)(j-)/(double)(i+j-)*(double)(j-)/(double)(i+j-)*dp[i][j-];
}
printf("%.9lf\n",dp[n][m]);
}

CF 148D Bag of mice【概率DP】的更多相关文章

  1. CF 148D Bag of mice 概率dp 难度:0

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  2. CF 148D. Bag of mice (可能性DP)

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  3. codeforce 148D. Bag of mice[概率dp]

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  4. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  5. Codeforces 148D Bag of mice 概率dp(水

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...

  6. 抓老鼠 codeForce 148D - Bag of mice 概率DP

    设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...

  7. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  8. Bag of mice(概率DP)

    Bag of mice  CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...

  9. Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp

    题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...

随机推荐

  1. Spring - 什么是IOC?

  2. springboot中加入druid对sql进行监控

    springboot作为现在十分流行的框架,简化Spring应用的初始搭建以及开发过程,现在我们就使用springboot来进行简单的web项目搭建并对项目sql进行监控. 项目的搭建就省略了,spr ...

  3. 如何使用koa实现socket.io官网的例子

    socket.io官网中使用express实现了一个最简单的IM即时聊天,今天我们使用koa来实现一下 ### 框架准备 确保你本地已经安装好了nodejs和npm,使用koa要求node版本> ...

  4. 致敬wusir懒孩子自有懒孩子的生存之道之二

    https://www.cnblogs.com/wupeiqi/ https://www.cnblogs.com/Eva-J/ https://www.cnblogs.com/wupeiqi/p/90 ...

  5. python3.7 time模块

    #!/usr/bin/env python __author__ = "lrtao2010" #python3.7 time模块 #time模块没有time.py文件,是内置到解释 ...

  6. 饭卡 HDU - 2546(dp)

    电子科大本部食堂的饭卡有一种很诡异的设计,即在购买之前判断余额.如果购买一个商品之前,卡上的剩余金额大于或等于5元,就一定可以购买成功(即使购买后卡上余额为负),否则无法购买(即使金额足够).所以大家 ...

  7. B1051 复数乘法(15 分)

    [PAT]B1051 复数乘法(15 分) - 路明天 - 博客园 https://www.cnblogs.com/hebust/p/9496809.html 在此对四舍五入输出结果做总结. 对于do ...

  8. Altium Designer

    抗干扰设计原则: 1.电源线的设计 选择合适的电源 尽量加宽电源线 保证电源线.底线走向和数据传输方向一致 使用抗干扰元器件(磁珠.电源滤波器等) 电源入口添加去耦电容 2.底线的设计 模拟地和数字地 ...

  9. [原]sencha touch之布局

    今天记录一下关于sencha touch中的几种布局,其实很简单的,还是直接上代码,一目了然 1:box布局,其实就是vbox和hbox,说白了一个是横着摆放,一个是竖着摆放 Ext.applicat ...

  10. heap&stack的区别

    1. heap (堆)是一个可动态申请的内存空间,一般所有创建的对象和数组都放在这里.stack (栈)是一个先进后出的数据结构,通常用于保存方法(函数)中的参数,局部变量.stack (栈)的空间小 ...